Skip to main content

Advertisement

Log in

From Hypertrophy to Heart Failure: What Is New in Genetic Cardiomyopathies

  • Updates in Advanced Heart Failure (E. Rame and M. St. John Sutton, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this review is to provide an update on the recent advances in the research and clinical care of patients with the major phenotypes of inherited cardiomyopathies—hypertrophic, dilated, and arrhythmogenic. Developments in genetics, risk stratification, therapies, and disease modeling will be discussed.

Recent

Diagnostic, prognostic, and therapeutic tools which incorporate genetic and genomic data are being steadily incorporated into the routine clinical care of patients with genetic cardiomyopathies. Human pluripotent stem cells are a breakthrough model system for the study of genetic variation associated with inherited cardiovascular disease.

Summary

Next-generation sequencing technology and molecular-based diagnostics and therapeutics have emerged as valuable tools to improve the recognition and care of patients with hypertrophic, dilated, and arrhythmogenic cardiomyopathies. Improved adjudication of variant pathogenicity and management of genotype-positive/phenotype-negative individuals are imminent challenges in this realm of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goodwin JF, Gordon H, Hollman A, Bishop MB. Clinical aspects of cardiomyopathy. Br Med J. 1961;1(5219):69–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fontaine G, Guiraudon G, Frank R, Vedel J, Grosgogeat Y, Cabrol C, et al. Stimulation studies and epicardial mapping in ventricular tachycardia: study of mechanisms and selection for surgery. In: Re-entrant arrhythmias: mechanisms and treatment. Baltimore: University Park Press; 1977.

    Google Scholar 

  3. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65(2):384–98.

    CAS  PubMed  Google Scholar 

  4. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16. https://doi.org/10.1161/circulationaha.106.174287.

    Article  PubMed  Google Scholar 

  5. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270–6. https://doi.org/10.1093/eurheartj/ehm342.

    Article  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  7. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, et al. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precision Med. 2018;11(1):e000043. https://doi.org/10.1161/hcg.0000000000000043.

    Article  Google Scholar 

  8. Matsa E, Ahrens JH, Wu JC. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol Rev. 2016;96(3):1093–126. https://doi.org/10.1152/physrev.00036.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cirino AL, Lakdawala NK, McDonough B, Conner L, Adler D, Weinfeld M, et al. A comparison of whole genome sequencing to multigene panel testing in hypertrophic cardiomyopathy patients. Circ Cardiovasc Genet. 2017;10(5):e001768. https://doi.org/10.1161/circgenetics.117.001768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Bagnall RD, Ingles J, Dinger ME, Cowley MJ, Ross SB, Minoche AE, et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2018;72(4):419–29. https://doi.org/10.1016/j.jacc.2018.04.078 This study demonstrates the utility of whole genome sequencing to identify causes of HCM in cases that were not diagnosed with targeted testing.

    Article  PubMed  Google Scholar 

  11. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of Cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871–86. https://doi.org/10.1016/j.jacc.2016.08.079.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60. https://doi.org/10.1016/j.jacc.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  13. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  PubMed  Google Scholar 

  14. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    CAS  PubMed  Google Scholar 

  15. Hada Y, Sakamoto T, Amano K, Yamaguchi T, Takenaka K, Takahashi H, et al. Prevalence of hypertrophic cardiomyopathy in a population of adult Japanese workers as detected by echocardiographic screening. Am J Cardiol. 1987;59(1):183–4.

    CAS  PubMed  Google Scholar 

  16. Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med. 2004;116(1):14–8.

    PubMed  Google Scholar 

  17. Maron BJ, Mathenge R, Casey SA, Poliac LC, Longe TF. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol. 1999;33(6):1590–5.

    CAS  PubMed  Google Scholar 

  18. Maron BJ, Spirito P, Roman MJ, Paranicas M, Okin PM, Best LG, et al. Prevalence of hypertrophic cardiomyopathy in a population-based sample of American Indians aged 51 to 77 years (the Strong Heart Study). Am J Cardiol. 2004;93(12):1510–4.

    PubMed  Google Scholar 

  19. Maro E, Janabi M, Kaushik R. Clinical and echocardiographic study of hypertrophic cardiomyopathy in Tanzania. Trop Dr. 2006;36(4):225–7.

    CAS  Google Scholar 

  20. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    PubMed  Google Scholar 

  21. Millat G, Bouvagnet P, Chevalier P, Dauphin C, Jouk PS, Da Costa A, et al. Prevalence and spectrum of mutations in a cohort of 192 unrelated patients with hypertrophic cardiomyopathy. Eur J Med Genet. 2010;53(5):261–7.

    PubMed  Google Scholar 

  22. Kaski JP, Syrris P, Esteban MTT, Jenkins S, Pantazis A, Deanfield JE, et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ: Genom Precision Med. 2009;2(5):436–41.

    CAS  Google Scholar 

  23. Erdmann J, Daehmlow S, Wischke S, Senyuva M, Werner U, Raible J, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003;64(4):339–49.

    CAS  PubMed  Google Scholar 

  24. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–32.

    PubMed  Google Scholar 

  25. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O'donoghue A, et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332(16):1058–65.

    CAS  PubMed  Google Scholar 

  26. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379–82.

    CAS  PubMed  Google Scholar 

  27. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77(5):701–12.

    PubMed  Google Scholar 

  28. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103(10):R39–43. https://doi.org/10.1172/jci6460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32(9):1687–94. https://doi.org/10.1006/jmcc.2000.1204.

    Article  CAS  PubMed  Google Scholar 

  30. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13(1):63–9. https://doi.org/10.1038/ng0596-63.

    Article  CAS  PubMed  Google Scholar 

  31. Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17(18):2753–65.

    CAS  PubMed  Google Scholar 

  32. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70. https://doi.org/10.1161/circresaha.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marian AJ. The case of “missing causal genes” and the practice of medicine: a Sherlock Holmes approach of deductive reasoning. Circ Res. 2016;119(1):21–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Bainbridge MN, Tan Y, Willerson JT, Marian AJ. A potential oligogenic etiology of hypertrophic cardiomyopathy: a classic single-gene disorder. Circ Res. 2017;120(7):1084–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nistri S, Olivotto I, Maron MS, Ferrantini C, Coppini R, Grifoni C, et al. Beta blockers for prevention of exercise-induced left ventricular outflow tract obstruction in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2012;110(5):715–9. https://doi.org/10.1016/j.amjcard.2012.04.051.

    Article  CAS  PubMed  Google Scholar 

  36. Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(8):1251–8. https://doi.org/10.1016/j.jacc.2005.01.012.

    Article  CAS  PubMed  Google Scholar 

  37. Gilligan DM, Chan WL, Joshi J, Clarke P, Fletcher A, Krikler S, et al. A double-blind, placebo-controlled crossover trial of nadolol and verapamil in mild and moderately symptomatic hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;21(7):1672–9.

    CAS  PubMed  Google Scholar 

  38. Maron BJ, Dearani JA, Ommen SR, Maron MS, Schaff HV, Nishimura RA, et al. Low operative mortality achieved with surgical septal myectomy: role of dedicated hypertrophic cardiomyopathy centers in the management of dynamic subaortic obstruction. J Am Coll Cardiol. 2015;66(11):1307–8. https://doi.org/10.1016/j.jacc.2015.06.1333.

    Article  PubMed  Google Scholar 

  39. Maron BJ, Nishimura RA. Surgical septal myectomy versus alcohol septal ablation: assessing the status of the controversy in 2014. Circulation. 2014;130(18):1617–24. https://doi.org/10.1161/circulationaha.114.011580.

    Article  PubMed  Google Scholar 

  40. Kim LK, Swaminathan RV, Looser P, Minutello RM, Wong SC, Bergman G, et al. Hospital volume outcomes after septal myectomy and alcohol septal ablation for treatment of obstructive hypertrophic cardiomyopathy: US nationwide inpatient database, 2003-2011. JAMA Cardiol. 2016;1(3):324–32. https://doi.org/10.1001/jamacardio.2016.0252.

    Article  PubMed  Google Scholar 

  41. Patel SR, Saeed O, Naftel D, Myers S, Kirklin J, Jorde UP, et al. Outcomes of restrictive and hypertrophic cardiomyopathies after LVAD: an INTERMACS analysis. J Card Fail. 2017;23(12):859–67. https://doi.org/10.1016/j.cardfail.2017.09.011.

    Article  PubMed  Google Scholar 

  42. Maron MS, Kalsmith BM, Udelson JE, Li W, DeNofrio D. Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(5):574–9. https://doi.org/10.1161/circheartfailure.109.922872.

    Article  PubMed  Google Scholar 

  43. Rowin EJ, Maron BJ, Abt P, Kiernan MS, Vest A, Costantino F, et al. Impact of advanced therapies for improving survival to heart transplant in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2018;121(8):986–96.

    PubMed  Google Scholar 

  44. O'Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20. https://doi.org/10.1093/eurheartj/eht439.

    Article  PubMed  Google Scholar 

  45. Vriesendorp PA, Schinkel AF, Liebregts M, Theuns DA, van Cleemput J, ten Cate FJ, et al. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2015;8(4):829–35.

    PubMed  Google Scholar 

  46. Maron BJ, Casey SA, Chan RH, Garberich RF, Rowin EJ, Maron MS. Independent assessment of the European Society of Cardiology sudden death risk model for hypertrophic cardiomyopathy. Am J Cardiol. 2015;116(5):757–64.

    PubMed  Google Scholar 

  47. Fernández A, Quiroga A, Ochoa JP, Mysuta M, Casabé JH, Biagetti M, et al. Validation of the 2014 European Society of Cardiology sudden cardiac death risk prediction model in hypertrophic cardiomyopathy in a reference center in South America. Am J Cardiol. 2016;118(1):121–6.

    PubMed  Google Scholar 

  48. Ruiz-Salas A, García-Pinilla J, Cabrera-Bueno F, Fernández-Pastor J, Peña-Hernández J, Medina-Palomo C, et al. Comparison of the new risk prediction model (HCM risk-SCD) and classic risk factors for sudden death in patients with hypertrophic cardiomyopathy and defibrillator. Europace. 2016;18(5):773.

    PubMed  Google Scholar 

  49. O'Mahony C, Jichi F, Ommen SR, Christiaans I, Arbustini E, Garcia-Pavia P, et al. International External Validation Study of the 2014 European Society of Cardiology Guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM). Circulation. 2018;137(10):1015–23. https://doi.org/10.1161/circulationaha.117.030437.

    Article  PubMed  Google Scholar 

  50. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    PubMed  Google Scholar 

  51. Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. 2018;72(8):857–70.

    PubMed  Google Scholar 

  52. • Kramer CM, Appelbaum E, Desai MY, Desvigne-Nickens P, JP DM, Friedrich MG, et al. Hypertrophic cardiomyopathy registry: the rationale and design of an international, observational study of hypertrophic cardiomyopathy. Am Heart J. 2015;170(2):223–30 This article reviews the design of the highly anticipated international Hypertrophic Cardiomyopathy Registry.

    PubMed  PubMed Central  Google Scholar 

  53. van Velzen HG, Vriesendorp PA, Oldenburg RA, van Slegtenhorst MA, van der Velden J, Schinkel AF, et al. Value of genetic testing for the prediction of long-term outcome in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2016;118(6):881–7.

    PubMed  Google Scholar 

  54. Li Q, Gruner C, Chan RH, Care M, Siminovitch K, Williams L, et al. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ Cardiovasc Genet. 2014;7(4):416–22. https://doi.org/10.1161/circgenetics.113.000331.

    Article  CAS  PubMed  Google Scholar 

  55. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880–8. https://doi.org/10.1038/gim.2014.205.

    Article  PubMed  Google Scholar 

  56. Ho CY, McMurray JJ, Cirino AL, Colan SD, Day SM, Desai AS, et al. The design of the valsartan for attenuating disease evolution in early sarcomeric hypertrophic cardiomyopathy (VANISH) trial. Am Heart J. 2017;187:145–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacoby D, Lester S, Owens A, Wang A, Young D, Tripuraneni R, et al. Reduction in left ventricular outflow tract gradient with mavacamten (MYK-461) in symptomatic obstructive hypertrophic patients (PIONEER-HCM). J Am Coll Cardiol. 2018;71(11 Supplement):A644. https://doi.org/10.1016/s0735-1097(18)31185-9.

    Article  Google Scholar 

  59. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–13. https://doi.org/10.1016/j.stem.2012.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Han L, Li Y, Tchao J, Kaplan AD, Lin B, Li Y, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104(2):258–69. https://doi.org/10.1093/cvr/cvu205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report—2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1037–46.

    PubMed  Google Scholar 

  62. Sefa MO, Tuluce K, Yakar ST, Kilic S, Soner HK, Sayin A, et al. Screening first-degree relatives of patients with idiopathic dilated cardiomyopathy. Herz. 2017;42(7):669–76.

    Google Scholar 

  63. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134(23):e579–646.

    PubMed  Google Scholar 

  64. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    PubMed  Google Scholar 

  65. Petretta M, Pirozzi F, Sasso L, Paglia A, Bonaduce D. Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol. 2011;108(8):1171–6.

    PubMed  Google Scholar 

  66. Mestroni L, Maisch B, McKenna W, Schwartz K, Charron P, Rocco C, et al. Guidelines for the study of familial dilated cardiomyopathies. Eur Heart J. 1999;20(2):93–102.

    CAS  PubMed  Google Scholar 

  67. Kinnamon DD, Morales A, Bowen DJ, Burke W, Hershberger RE. Toward genetics-driven early intervention in dilated cardiomyopathy: design and implementation of the DCM precision medicine study. Circ Cardiovasc Genet. 2017;10(6). https://doi.org/10.1161/circgenetics.117.001826.

  68. • Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2014;36(18):1123–35 This study is a comprehensive investigation of the genetics of DCM in a large-scale cohort.

    PubMed  Google Scholar 

  69. Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation. 2013;128(25):2813–51.

    PubMed  Google Scholar 

  70. Hershberger RE, Morales A. Dilated cardiomyopathy overview. In: GeneReviews [Internet]. University of Washington, Seattle, Seattle, Washington. 1993. https://www.ncbi.nlm.nih.gov/books/NBK1309/. Accessed 15 July 2018.

  71. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47. https://doi.org/10.1038/nrcardio.2013.105

    Article  CAS  PubMed  Google Scholar 

  72. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16(8):601–8.

    CAS  PubMed  Google Scholar 

  73. Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V, Pesce LL, et al. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. Circ Genom Precis Med. 2014;7(6):751–9.

    CAS  Google Scholar 

  74. Minoche AE, Horvat C, Johnson R, Gayevskiy V, Morton SU, Drew AP, et al. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genet Med. 2018;21:650–62. https://doi.org/10.1038/s41436-018-0084-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6-ra6. https://doi.org/10.1126/scitranslmed.3010134.

    Article  CAS  Google Scholar 

  77. Akinrinade O, Koskenvuo JW, Alastalo T-P. Prevalence of titin truncating variants in general population. PLoS One. 2015;10(12):e0145284.

    PubMed  PubMed Central  Google Scholar 

  78. Norton N, Li D, Rampersaud E, Morales A, Martin ER, Zuchner S, et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ Cardiovasc Genet. 2013;6(2):144–53. https://doi.org/10.1161/circgenetics.111.000062.

    Article  CAS  PubMed  Google Scholar 

  79. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349(6251):982–6. https://doi.org/10.1126/science.aaa5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Peterson A, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156(1):161–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. van Tintelen JP, Hofstra RM, Katerberg H, Rossenbacker T, Wiesfeld AC, du Marchie Sarvaas GJ, et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am Heart J. 2007;154(6):1130–9.

    PubMed  Google Scholar 

  82. Siu CW, Lee YK, Ho JC, Lai WH, Chan YC, Ng KM, et al. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging. 2012;4(11):803–22. https://doi.org/10.18632/aging.100503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fatkin D, Macrae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715–24.

    CAS  PubMed  Google Scholar 

  84. van Rijsingen IAW, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: a European cohort study. J Am Coll Cardiol. 2012;59(5):493–500. https://doi.org/10.1016/j.jacc.2011.08.078.

    Article  CAS  PubMed  Google Scholar 

  85. Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM, Duboc D. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354(2):209–10.

    CAS  PubMed  Google Scholar 

  86. Anselme F, Moubarak G, Savouré A, Godin B, Borz B, Drouin-Garraud V, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10(10):1492–8. https://doi.org/10.1016/j.hrthm.2013.06.020.

    Article  PubMed  Google Scholar 

  87. • Kumar S, Baldinger SH, Gandjbakhch E, Maury P, Sellal J-M, Androulakis AF, et al. Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol. 2016;68(21):2299–307 This article contributes important natural history and prognostic information about LMNA -related heart disease.

    CAS  PubMed  Google Scholar 

  88. Kusumoto FM, Calkins H, Boehmer J, Buxton AE, Chung MK, Gold MR, et al. HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. J Am Coll Cardiol. 2014;64(11):1143–77. https://doi.org/10.1016/j.jacc.2014.04.008.

    Article  PubMed  Google Scholar 

  89. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867. https://doi.org/10.1093/eurheartj/ehv316.

    Article  PubMed  Google Scholar 

  90. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, et al. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol. 2011;57(21):2160–8.

    PubMed  Google Scholar 

  91. Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016;68(22):2440–51. https://doi.org/10.1016/j.jacc.2016.09.927.

    Article  CAS  PubMed  Google Scholar 

  92. Van Der Zwaag PA, Van Rijsingen IA, Asimaki A, Jongbloed JD, Van Veldhuisen DJ, Wiesfeld AC, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14(11):1199–207.

    PubMed  PubMed Central  Google Scholar 

  93. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4(130):130ra47. https://doi.org/10.1126/scitranslmed.3003552.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D, Termglinchan V, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955. https://doi.org/10.1038/ncomms7955.

    Article  CAS  PubMed  Google Scholar 

  95. Tse HF, Ho JC, Choi SW, Lee YK, Butler AW, Ng KM, et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet. 2013;22(7):1395–403. https://doi.org/10.1093/hmg/dds556.

    Article  CAS  PubMed  Google Scholar 

  96. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105–10. https://doi.org/10.1038/nature11799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Caspi O, Huber I, Gepstein A, Arbel G, Maizels L, Boulos M, et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):557–68. https://doi.org/10.1161/circgenetics.113.000188.

    Article  CAS  PubMed  Google Scholar 

  98. Ma D, Wei H, Lu J, Ho S, Zhang G, Sun X, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34(15):1122–33. https://doi.org/10.1093/eurheartj/ehs226.

    Article  CAS  PubMed  Google Scholar 

  99. Dick E, Kalra S, Anderson D, George V, Ritso M, Laval SH, et al. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations. Stem Cells Dev. 2013;22(20):2714–24. https://doi.org/10.1089/scd.2013.0135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8(5):457–66. https://doi.org/10.1242/dmm.019505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616–23. https://doi.org/10.1038/nm.3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, Inanloo RK, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031–42. https://doi.org/10.1038/ncb3411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ang YS, Rivas RN, Ribeiro AJS, Srivas R, Rivera J, Stone NR, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell. 2016;167(7):1734–49.e22. https://doi.org/10.1016/j.cell.2016.11.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tucker NR, McLellan MA, Hu D, Ye J, Parsons VA, Mills RW, et al. Novel mutation in FLNC (Filamin C) causes familial restrictive Cardiomyopathy. Circ Cardiovasc Genet. 2017;10(6). https://doi.org/10.1161/circgenetics.117.001780.

  105. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy: dysplasia, dystrophy, or myocarditis? Circulation. 1996;94(5):983–91.

    CAS  PubMed  Google Scholar 

  106. Asimaki A, Saffitz JE. The role of endomyocardial biopsy in ARVC: looking beyond histology in search of new diagnostic markers. J Cardiovasc Electrophysiol. 2011;22(1):111–7.

    PubMed  Google Scholar 

  107. Lopez-Ayala JM, Pastor-Quirante F, Gonzalez-Carrillo J, Lopez-Cuenca D, Sanchez-Munoz JJ, Oliva-Sandoval MJ, et al. Genetics of myocarditis in arrhythmogenic right ventricular dysplasia. Heart Rhythm. 2015;12(4):766–73.

    PubMed  Google Scholar 

  108. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31(7):806–14. https://doi.org/10.1093/eurheartj/ehq025.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008;52(25):2175–87.

    PubMed  Google Scholar 

  110. Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nature Genet. 2004;36(11):1162–4. https://doi.org/10.1038/ng1461.

    Article  CAS  PubMed  Google Scholar 

  111. Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200–6. https://doi.org/10.1086/344208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113(9):1171–9. https://doi.org/10.1161/circulationaha.105.583674.

    Article  CAS  PubMed  Google Scholar 

  113. Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79(5):978–84. https://doi.org/10.1086/509122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355(9221):2119–24. https://doi.org/10.1016/s0140-6736(00)02379-5.

    Article  CAS  PubMed  Google Scholar 

  115. • Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Am Coll Cardiol. 2018;72(7):784–804 This is an excellent review of ARVC/D by the group involved in its early description.

    PubMed  Google Scholar 

  116. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(1):61–72. https://doi.org/10.1056/NEJMra1509267.

    Article  CAS  PubMed  Google Scholar 

  117. Quarta G, Muir A, Pantazis A, Syrris P, Gehmlich K, Garcia-Pavia P, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy impact of genetics and revised task force criteria. Circulation. 2011;123(23):2701–U99. https://doi.org/10.1161/circulationaha.110.976936.

    Article  PubMed  Google Scholar 

  118. Groeneweg JA, Bhonsale A, James CA, te Riele AS, Dooijes D, Tichnell C, et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet. 2015;8(3):437–46. https://doi.org/10.1161/circgenetics.114.001003.

    Article  CAS  PubMed  Google Scholar 

  119. Hodgkinson K, Connors S, Merner N, Haywood A, Young TL, McKenna W, et al. The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p. S358L mutation in TMEM43. Clin Genet. 2013;83(4):321–31.

    CAS  PubMed  Google Scholar 

  120. Bhonsale A, Groeneweg JA, James CA, Dooijes D, Tichnell C, Jongbloed JD, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015;36(14):847–55.

    CAS  PubMed  Google Scholar 

  121. James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy–associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62(14):1290–7.

    PubMed  Google Scholar 

  122. Xu TH, Yang Z, Vatta M, Rampazzo A, Beffagna G, Pillichou K, et al. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2010;55(6):587–97. https://doi.org/10.1016/j.jacc.2009.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. •• Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2. 0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249 This policy statement provides an update regarding the clinician's responsibility of reporting of secondary findings in clinical genetic sequencing.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Reza.

Ethics declarations

Conflict of Interest

Dr. Reza is supported by the NIH National Human Genome Research Institute Ruth L. Kirschstein Institutional National Research Service T32 Award in Genomic Medicine (T32 HG009495). Dr. Owens is supported by the Winkelman Family Fund in Cardiovascular Innovation. Dr. Musunuru declares no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Updates in Advanced Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza, N., Musunuru, K. & Owens, A.T. From Hypertrophy to Heart Failure: What Is New in Genetic Cardiomyopathies. Curr Heart Fail Rep 16, 157–167 (2019). https://doi.org/10.1007/s11897-019-00435-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-019-00435-0

Keywords

Navigation