Exercise in Heart Failure—What Is the Optimal Dose to Improve Pathophysiology and Exercise Capacity?

Abstract

Purpose of Review

In this review, our aim is to summarize the evidence of exercise interventions in heart failure. Addressing pathophysiology, we discuss training modalities and optimal dose finding in exercising patients with reduced (HFrEF) and preserved ejection fraction (HFpEF).

Recent Findings

While smaller studies showed a trend towards improved exercise capacity by high-intensity interval training in comparison with moderate continuous training in HFrEF, recent multicenter randomized trials were unable to confirm these findings. Considering the lack of effective drug therapies in HFpEF, exercise training plays an even more important role in this particular population.

Summary

Exercise training in heart failure is beneficial in addition to medical and device therapy. Data are still mostly limited to HFrEF. Intensity should primarily be moderate at a daily base. The concept of “the higher the better” could not be confirmed for HFrEF. The overall concept of training is to maximally strain the periphery without straining the myocardium.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46.

    Article  Google Scholar 

  2. 2.

    Meta-analysis Global Group in Chronic Heart F. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33(14):1750–7.

    Article  Google Scholar 

  3. 3.

    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    CAS  Article  Google Scholar 

  4. 4.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  Google Scholar 

  5. 5.

    Henschen S. Eine medizinische Sportstudie. Skilauf und Skiwettlauf. Jena: Fischer; 1899. Mittlg. Med. Klinik Upsala

    Google Scholar 

  6. 6.

    Morris JN, Heady JA, Raffle PAB, Roberts CG, Parks JW. Coronary heart disease and physical activity of work. Lancet. 1953;265:1111–20.

    Article  Google Scholar 

  7. 7.

    Burch GE, McDonald CD. Prolonged bed rest in the treatment of ischemic cardiomyopathy. Chest. 1971;60(5):424–30.

    CAS  Article  Google Scholar 

  8. 8.

    Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988;78(3):506–15.

    CAS  Article  Google Scholar 

  9. 9.

    Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation. 1992;85(6):2119–31.

    CAS  Article  Google Scholar 

  10. 10.

    Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25(6):1239–49.

    CAS  Article  Google Scholar 

  11. 11.

    Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99(9):1173–82.

    CAS  Article  Google Scholar 

  12. 12.

    O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–50.

    CAS  Article  Google Scholar 

  13. 13.

    Writing Committee M, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    Google Scholar 

  14. 14.

    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.

    CAS  Article  Google Scholar 

  15. 15.

    Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309(8):781–91.

    CAS  Article  Google Scholar 

  16. 16.

    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67.

    CAS  Article  Google Scholar 

  17. 17.

    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    CAS  Article  Google Scholar 

  18. 18.

    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.

    CAS  Article  Google Scholar 

  19. 19.

    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777–81.

    CAS  Article  Google Scholar 

  20. 20.

    Dieberg G, Ismail H, Giallauria F, Smart NA. Clinical outcomes and cardiovascular responses to exercise training in heart failure patients with preserved ejection fraction: a systematic review and meta-analysis. J Appl Physiol (1985). 2015;119(6):726–33.

    CAS  Article  Google Scholar 

  21. 21.

    Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3(6):659–67.

    Article  Google Scholar 

  22. 22.

    Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46.

    CAS  Article  Google Scholar 

  23. 23.

    Edelmann F, Gelbrich G, Dungen HD, Frohling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol. 2011;58(17):1780–91.

    Article  Google Scholar 

  24. 24.

    Hollekim-Strand SM, Bjorgaas MR, Albrektsen G, Tjonna AE, Wisloff U, Ingul CB. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: a randomized controlled trial. J Am Coll Cardiol. 2014;64(16):1758–60.

    Article  Google Scholar 

  25. 25.

    Suchy C, Massen L, Rognmo O, Van Craenenbroeck EM, Beckers P, Kraigher-Krainer E, et al. Optimising exercise training in prevention and treatment of diastolic heart failure (OptimEx-CLIN): rationale and design of a prospective, randomised, controlled trial. Eur J Prev Cardiol. 2014;21(2 Suppl):18–25.

    Article  Google Scholar 

  26. 26.

    Edelmann F, Bobenko A, Gelbrich G, Hasenfuss G, Herrmann-Lingen C, Duvinage A, et al. Exercise training in Diastolic Heart Failure (Ex-DHF): rationale and design of a multicenter, prospective, randomized, controlled, parallel group trial. Eur J Heart Fail. 2017;19(8):1067–74.

    Article  Google Scholar 

  27. 27.

    Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.

    CAS  Article  Google Scholar 

  28. 28.

    Febbraio MA. Exercise metabolism in 2016: health benefits of exercise - more than meets the eye! Nat Rev Endocrinol. 2017;13(2):72–4.

    Article  Google Scholar 

  29. 29.

    Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 years. J Appl Physiol (1985). 2000;89(1):81–8.

    CAS  Article  Google Scholar 

  30. 30.

    • Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol. 2017;313(1):H72–h88. This article provides a detailed insight in pathophysiology of exercise at a molecular level in patients with cardiovae most recent study which compscular disease, especially heart failure.

  31. 31.

    O'Leary MF, Vainshtein A, Iqbal S, Ostojic O, Hood DA. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Phys Cell Phys. 2013;304(5):C422–30.

    CAS  Article  Google Scholar 

  32. 32.

    Jannig PR, Moreira JB, Bechara LR, Bozi LH, Bacurau AV, Monteiro AW, et al. Autophagy signaling in skeletal muscle of infarcted rats. PLoS One. 2014;9(1):e85820.

    Article  Google Scholar 

  33. 33.

    Lenk K, Erbs S, Hollriegel R, Beck E, Linke A, Gielen S, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2012;19(3):404–11.

    Article  Google Scholar 

  34. 34.

    Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circulation. 2012;125(22):2716–27.

    CAS  Article  Google Scholar 

  35. 35.

    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, et al. Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12(4):401–6.

    Article  Google Scholar 

  36. 36.

    Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29(5):1067–73.

    CAS  Article  Google Scholar 

  37. 37.

    Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–38.

    CAS  Article  Google Scholar 

  38. 38.

    Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res. 2007;75(2):315–26.

    CAS  Article  Google Scholar 

  39. 39.

    Fleming I, Fisslthaler B, Dixit M, Busse R. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci. 2005;118(Pt 18):4103–11.

    CAS  Article  Google Scholar 

  40. 40.

    Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342(7):454–60.

    CAS  Article  Google Scholar 

  41. 41.

    Allemann Y, Vetter C, Kartal N, Eyer S, Stengel SM, Saner H, et al. Effect of mild endurance exercise training and pravastatin on peripheral vasodilatation of forearm resistance vessels in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2005;12(4):332–40.

    Article  Google Scholar 

  42. 42.

    Beck EB, Erbs S, Mobius-Winkler S, Adams V, Woitek FJ, Walther T, et al. Exercise training restores the endothelial response to vascular growth factors in patients with stable coronary artery disease. Eur J Prev Cardiol. 2012;19(3):412–8.

    Article  Google Scholar 

  43. 43.

    Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107(25):3152–8.

    CAS  Article  Google Scholar 

  44. 44.

    Desch S, Sonnabend M, Niebauer J, Sixt S, Sareban M, Eitel I, et al. Effects of physical exercise versus rosiglitazone on endothelial function in coronary artery disease patients with prediabetes. Diabetes Obes Metab. 2010;12(9):825–8.

    CAS  Article  Google Scholar 

  45. 45.

    Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol. 1996;28(7):1652–60.

    CAS  Article  Google Scholar 

  46. 46.

    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  Google Scholar 

  47. 47.

    Van Craenenbroeck EM, Frederix G, Pattyn N, Beckers P, Van Craenenbroeck AH, Gevaert A, et al. Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy. Am J Physiol Heart Circ Physiol. 2015;309(11):H1876–82.

    Article  Google Scholar 

  48. 48.

    Giannuzzi P, Temporelli PL, Corra U, Tavazzi L, Group E-CS. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108(5):554–9.

    Article  Google Scholar 

  49. 49.

    Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98(24):2709–15.

    CAS  Article  Google Scholar 

  50. 50.

    Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One. 2015;10(6):e0129971.

    Article  Google Scholar 

  51. 51.

    Adams V, Linke A, Gielen S, Erbs S, Hambrecht R, Schuler G. Modulation of Murf-1 and MAFbx expression in the myocardium by physical exercise training. Eur J Cardiovasc Prev Rehabil. 2008;15(3):293–9.

    Article  Google Scholar 

  52. 52.

    Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y, Adams V, et al. Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model. Eur J Heart Fail. 2009;11(4):342–8.

    CAS  Article  Google Scholar 

  53. 53.

    Wei X, Liu X, Rosenzweig A. What do we know about the cardiac benefits of exercise? Trends Cardiovasc Med. 2015;25(6):529–36.

    CAS  Article  Google Scholar 

  54. 54.

    Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE, et al. Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol (1985). 2002;92(4):1524–30.

    CAS  Article  Google Scholar 

  55. 55.

    Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J. 2014;35(39):2722–31.

    CAS  Article  Google Scholar 

  56. 56.

    Hammond MD, Bauer KA, Sharp JT, Rocha RD. Respiratory muscle strength in congestive heart failure. Chest. 1990;98(5):1091–4.

    CAS  Article  Google Scholar 

  57. 57.

    Mangner N, Bowen TS, Werner S, Fischer T, Kullnick Y, Oberbach A, et al. Exercise training prevents diaphragm contractile dysfunction in heart failure. Med Sci Sports Exerc. 2016;48(11):2118–24.

    CAS  Article  Google Scholar 

  58. 58.

    Bowen TS, Mangner N, Werner S, Glaser S, Kullnick Y, Schrepper A, et al. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. J Appl Physiol (1985). 2015;118(1):11–9.

    CAS  Article  Google Scholar 

  59. 59.

    Bowen TS, Rolim NP, Fischer T, Baekkerud FH, Medeiros A, Werner S, et al. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail. 2015;17(3):263–72.

    CAS  Article  Google Scholar 

  60. 60.

    Adamopoulos S, Parissis J, Karatzas D, Kroupis C, Georgiadis M, Karavolias G, et al. Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol. 2002;39(4):653–63.

    CAS  Article  Google Scholar 

  61. 61.

    Bozkurt B, Mann DL, Deswal A. Biomarkers of inflammation in heart failure. Heart Fail Rev. 2010;15(4):331–41.

    CAS  Article  Google Scholar 

  62. 62.

    Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83(3):376–82.

    CAS  Article  Google Scholar 

  63. 63.

    Bernardo BC, Charchar FJ, Lin RC, McMullen JR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ. 2012;21(3):131–42.

    CAS  Article  Google Scholar 

  64. 64.

    Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95.

    CAS  Article  Google Scholar 

  65. 65.

    Marin T, Gongol B, Chen Z, Woo B, Subramaniam S, Chien S, et al. Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med. 2013;64:61–8.

    CAS  Article  Google Scholar 

  66. 66.

    Wen CP, Wai JPM, Tsai MK, Yang YC, Cheng TYD, Lee M-C, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.

    Article  Google Scholar 

  67. 67.

    Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643–54.

    Article  Google Scholar 

  68. 68.

    Schnohr P, Marott JL, Jensen JS, Jensen GB. Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol. 2012;19(1):73–80.

    Article  Google Scholar 

  69. 69.

    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34.

    Article  Google Scholar 

  70. 70.

    Gielen S, Laughlin MH, O'Conner C, Duncker DJ. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations. Prog Cardiovasc Dis. 2015;57(4):347–55.

    Article  Google Scholar 

  71. 71.

    Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA. Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Fail. 2013;1(6):514–22.

    Article  Google Scholar 

  72. 72.

    • Ellingsen O, Halle M, Conraads VM, Stoylen A, Dalen H, Delagardelle C, et al. High intensity interval training in heart failure patients with reduced ejection fraction. Circulation. 2017;135(9):839–49. This is the most recent study which compared moderate continuous training with high-intensity interval training in heart failure with reduced ejection fraction.

    Article  Google Scholar 

  73. 73.

    Gomes Neto M, Duraes AR, Conceicao LSR, Saquetto MB, Ellingsen O, Carvalho VO. High intensity interval training versus moderate intensity continuous training on exercise capacity and quality of life in patients with heart failure with reduced ejection fraction: a systematic review and meta-analysis. Int J Cardiol. 2018;261:134–41.

    Article  Google Scholar 

  74. 74.

    Piccini JP, Hellkamp AS, Whellan DJ, Ellis SJ, Keteyian SJ, Kraus WE, et al. Exercise training and implantable cardioverter-defibrillator shocks in patients with heart failure. JACC: Heart Fail. 2013;1(2):142–8.

    Google Scholar 

  75. 75.

    Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36(10):1080–6.

    Article  Google Scholar 

  76. 76.

    Ganga HV, Leung A, Jantz J, Choudhary G, Stabile L, Levine DJ, et al. Supervised exercise training versus usual care in ambulatory patients with left ventricular assist devices: a systematic review. PLoS One. 2017;12(3):e0174323.

    Article  Google Scholar 

  77. 77.

    Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2016;133(24):e694–711.

    Article  Google Scholar 

  78. 78.

    Bjarnason-Wehrens B, Mayer-Berger W, Meister ER, Baum K, Hambrecht R, Gielen S, et al. Recommendations for resistance exercise in cardiac rehabilitation. Recommendations of the German Federation for Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2004;11(4):352–61.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Johannes Schindler.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Comorbidities of Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schindler, M.J., Adams, V. & Halle, M. Exercise in Heart Failure—What Is the Optimal Dose to Improve Pathophysiology and Exercise Capacity?. Curr Heart Fail Rep 16, 98–107 (2019). https://doi.org/10.1007/s11897-019-00428-z

Download citation

Keywords

  • Heart failure
  • Heart failure with reduced ejection fraction
  • Heart failure with preserved ejection fraction
  • Exercise training
  • High-intensity interval training
  • Moderate continuous training