Advertisement

Current Heart Failure Reports

, Volume 15, Issue 3, pp 123–130 | Cite as

Management of Sleep Disordered Breathing in Patients with Heart Failure

  • Connor P. Oates
  • Manjula Ananthram
  • Stephen S. Gottlieb
Pharmacologic Therapy (W.H.W. Tang, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Therapy

Abstract

Purpose of Review

This paper reviews treatment options for sleep disordered breathing (SDB) in patients with heart failure. We sought to identify therapies for SDB with the best evidence for long-term use in patients with heart failure and to minimize uncertainties in clinical practice by examining frequently discussed questions: what is the role of continuous positive airway pressure (CPAP) in patients with heart failure? Is adaptive servo-ventilation (ASV) safe in patients with heart failure? To what extent is SDB a modifiable risk factor?

Recent Findings

Consistent evidence has demonstrated that the development of SDB in patients with heart failure is a poor prognostic indicator and a risk factor for cardiovascular mortality. However, despite numerous available interventions for obstructive sleep apnea and central sleep apnea, it remains unclear what effect these therapies have on patients with heart failure. To date, all major randomized clinical trials have failed to demonstrate a survival benefit with SDB therapy and one major study investigating the use of adaptive servo-ventilation demonstrated harm.

Summary

Significant questions persist regarding the management of SDB in patients with heart failure. Until appropriately powered trials identify a treatment modality that increases cardiovascular survival in patients with SDB and heart failure, a patient’s heart failure management should remain the priority of medical care.

Keywords

Heart failure Treatment of sleep disordered breathing Obstructive sleep apnea Central sleep apnea ASV 

Notes

Compliance with Ethical Standards

Conflict of Interest

Manjula Ananthram and Connor P. Oates declare no conflicts of interest. Stephen S. Gottlieb reports grants from Respicardia and grants from Resmed, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Arzt M, Oldernburg O, Graml A, Erdmann E, Teschler H, Wegscheider K, et al. Phenotyping of sleep-disordered breathing in patients with chronic heart failure with reduced ejection fraction—the SchlaHF registry. J Am Heart Assoc. 2017;6:e005899. Important description of the epidemiology of sleep apnea in heart failure patients. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oldernburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, et al. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J. 2016;37:1695–703.CrossRefGoogle Scholar
  3. 3.
    Damy T, Margarit L, Noroc A, Bodez D, Guendouz S, Boyer L, et al. Prognostic impact of sleep-disordered breathing and its treatment with nocturnal ventilation for chronic heart failure. Eur J Heart Fail. 2012;14:1009–19.CrossRefPubMedGoogle Scholar
  4. 4.
    Tkacova R, Niroumand M, Lorenzi-Filho G, Bradley TD. Overnight shift from obstructive to central apneas in patients with heart failure: role of PCO2 and circulatory delay. Circulation. 2001;103:238–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Ryan CM, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D, et al. Shift in sleep apnoea type in heart failure patients in the CANPAP trial. Eur Respir J. 2010;35:592–7.CrossRefPubMedGoogle Scholar
  6. 6.
    White LH, Bradley TD. Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J Physiol. 2013;591:1179–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Khayat R, Small R, Rathman L, Krueger S, Gocke B, Clark L, et al. Sleep disordered breathing in heart failure: identifying and treating an important but often unrecognized comorbidity in heart failure patients. J Card Fail. 2013;19:431–44.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bradley TD, Floras JS. Sleep apnea and heart failure: obstructive sleep apnea. Circulation. 2003;107:1671–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang H, Parker JD, Newton GE, Floras JS, Mak S, Chiu KL, et al. Influence of obstructive sleep apnea in patients with heart failure. J Am Coll Cardiol. 2007;49(15):1625–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Sommerfeld A, Althouse AD, Prince J, Prince J, Atwood CW, Mulukutla SR, et al. Obstructive sleep apnea is associated with increased readmission in heart failure patients. Clin Cardiol. 2017;40:873–8.CrossRefPubMedGoogle Scholar
  11. 11.
    • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure. J Card Fail 2017; 23 (8): 628–651. Important consensus document recommending therapy for heart failure. Google Scholar
  12. 12.
    Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest. 2008;133(3):690–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Sin DD, Logan AG, Fitzgerald FS, Liu PP, Bradley TD. Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne-Stokes respiration. Circulation. 2000;102:61–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Gottlieb DJ, Punjabi NM, Mehra R, Patel SR, Quan SF, Babineau DC, et al. CPAP versus oxygen in obstructive sleep apnea. N Engl J Med. 2014;370:2276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshinaga K, Burwash IG, Leech JA, Haddad H, Johnson CB, deKemp RA, et al. The effects of continuous positive airway pressure on myocardial energetics in patients with heart failure and obstructive sleep apnea. J Am Coll Cardiol. 2007;49:450–8.CrossRefPubMedGoogle Scholar
  17. 17.
    • McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–31. In a large well controlled study, therapy with CPAP did not prevent cardiovascular events. CrossRefPubMedGoogle Scholar
  18. 18.
    • Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea; the RICCADSA randomized controlled trial. Am J Respir Crit Care Med. 2016;194:613–20. Further evidence that treatment of sleep apnea may not improve cardiovascular events in patients without heart failure. Google Scholar
  19. 19.
    Jaffe LM, Kjekshus J, Gottlieb SS. Importance and management of chronic sleep apnea in cardiology. Eur Heart J. 2013;34:809–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Oldenburg O, Bitter T, Wiemer M, Langer C, Horstkotte D, Piper C. Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med. 2009;10(7):726–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Javaheri S, Shukla R, Zeigler H, Wexler L. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol. 2007;49:2028–34.CrossRefPubMedGoogle Scholar
  23. 23.
    • Khayat R, Abraham W, Patt B, Brinkman V, Wannemacher J, Porter K, et al. Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. J Card Fail. 2012;18:534–40. Supports the concept that CSA reflects severe heart failure. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Emdin M, Mirizzi G, Giannoni A, Poletti R, Iudice G, Bramanti F, et al. Prognostic significance of central apneas throughout a 24-hour period in patients with heart failure. J Am Coll Cardiol. 2017;70:1351–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Lamba J, Simpson CS, Redfearn DP, Lamba J, Simpson CS, Redfearn DP. Cardiac resynchronization therapy for the treatment of sleep apnoea: a meta-analysis. Europace. 2011;13:1174–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Sinha AM, Skobel EC, Breithardt OA, Norra C, Markus KU, Breuer C, et al. Cardiac resynchronization therapy improves central sleep apnea and Cheyne-Stokes respiration in patients with chronic heart failure. J Am Coll Cardiol. 2004;44:68–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Mansfield DR, Solin P, Roebuck T, Bergin P, Kaye DM, Naughton MT. The effect of successful heart transplant treatment of heart failure on central sleep apnea. Chest. 2003;124:1675–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Garrigue S, Bordier P, Jaïs P, Shah DC, Hocini M, Raherison C, et al. Benefit of atrial pacing in sleep apnea syndrome. N Engl J Med. 2002;346:404–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Oldenburg O, Faber L, Vogt J, Dorszewski A, Szabados F, Horstkotte D, et al. Influence of cardiac resynchronisation therapy on different types of sleep disordered breathing. Eur J Heart Fail. 2007;9:820–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Luthje L, Renner B, Kessels R, Vollmann D, Raupach T, Gerritse B, et al. Cardiac resynchronization therapy and atrial overdrive pacing for the treatment of central sleep apnoea. Eur J Heart Fail. 2009;11:273–80.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lamba J, Simpson CS, Redfearn DP, Michael KA, Fitzpatrick M, Baranchuk A. Cardiac resynchronization therapy for the treatment of sleep apnoea: a meta-analysis. Europace. 2011;13:1174–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Javaheri S. Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med. 2006;173:234–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Javaheri S, Sands S, Edwards B. Acetazolamide attenuates Hunter-Cheyne-Stokes breathing but augments the hypercapnic ventilatory response in patients with heart failure. Ann Am Thorac Soc. 2014;11:80–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Naughton MT. Cheyne–Stokes respiration: friend or foe? Thorax. 2012;67:357–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Sharokh J. Pembrey’s dream: the time has come for a long-term trial of nocturnal supplemental nasal oxygen to treat central sleep apnea in congestive heart failure. Chest. 2003;123:322–5.CrossRefGoogle Scholar
  36. 36.
    Javaheri S, Ahmed M, Parker TJ, Brown CR. Effects of nasal O2 on sleep-related disordered breathing in ambulatory patients with stable heart failure. Sleep. 1999;22:1101–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Toyama T, Seki R, Kasama S, Isobe N, Sakurai S, Adachi H, et al. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea. Circ J. 2009;73:299–304.CrossRefPubMedGoogle Scholar
  38. 38.
    • Sepehrvand N, Ezekowitz JA. Oxygen therapy in patients with acute heart failure. J Am Coll Cardiol Heart Fail. 2016;4:783–90. Raises important questions about oxygen therapy in patients with SDB. Google Scholar
  39. 39.
    Nakao YM, Ueshima K, Yasuno S, Sasayama S. Effects of nocturnal oxygen therapy in patients with chronic heart failure and central sleep apnea: CHF-HOT study. Heart Vessel. 2016;31:165–72.CrossRefGoogle Scholar
  40. 40.
    • Oldenburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, et al. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J. 2016;37:1695–703. Raises concern that hypoxemia may be detrimental in HF patients. CrossRefPubMedGoogle Scholar
  41. 41.
    Bordier P, Lataste A, Hofmann P, Robert F, Bourenane G. Nocturnal oxygen therapy in patients with chronic heart failure and sleep apnea: a systematic review. Sleep Med. 2016 Jan;17:149–57.CrossRefPubMedGoogle Scholar
  42. 42.
    Mak S, Azevedo ER, Liu PP, Newton GE. Effect of hyperoxia on left ventricular function and filling pressures in patients with and without congestive heart failure. Chest. 2001;120(2):467–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Park JH, Balmain S, Berry C, Morton JJ, McMurray JJ. Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction. Heart. 2010;96:533–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Naghshin J, Rodriguez RH, Davis EM, Romano LC, McGaffin KR, O'Donnell CP. Chronic intermittent hypoxia exposure improves left ventricular contractility in transgenic mice with heart failure. J Appl Physiol (1985). 2012;113(5):791–8.CrossRefGoogle Scholar
  45. 45.
    Bradley TD, Logan AG, Kimoff RJ, Sériès F, Morrison D, Ferguson K, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353:2025–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Arzt M, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian continuous positive airway pressure for patients with central sleep apnea and heart failure trial (CANPAP). Circulation. 2007;115:3173–80.CrossRefPubMedGoogle Scholar
  47. 47.
    Javaheri S, Winslow D, McCullough P, Wylie P, Kryger MH. The use of a fully automated automatic adaptive servoventilation algorithm in the acute and long-term treatment of central sleep apnea. Chest. 2015;148(6):1454–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Morgenthaler TI, Kuzniar TJ, Wolfe LF, Willes L, McLain WC 3rd, Goldberg R. The complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapy. Sleep. 2014;37(5):927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    • Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105. Important demonstration that although ASV improves sleep apnea, it can increase mortality under certain circumstances. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kasai T, Usui Y, Yoshioka T, Yanagisawa N, Takata Y, Narui K, et al. Effect of flow-triggered adaptive servo-ventilation compared with continuous positive airway pressure in patients with chronic heart failure with coexisting obstructive sleep apnea and Cheyne-Stokes respiration. Circ Heart Fail. 2010;3:140–8.CrossRefPubMedGoogle Scholar
  51. 51.
    • Eulenburg C, Wegscheider K, Woehrle H, Angermann C, d'Ortho MP, Erdmann E, et al. Mechanisms underlying increased mortality risk in patients with heart failure and reduced ejection fraction randomly assigned to adaptive servoventilation in the SERVE-HF study: results of a secondary multistate modelling analysis. Lancet Respir Med. 2016;4(11):873–81. Helping to shed light on possible mechanisms of the results of SERVE-HF. CrossRefPubMedGoogle Scholar
  52. 52.
    Javaheri S, Brown LK, Randerath W, Khayat R. SERVE-HF: more questions than answers. Chest. 2016;149(4):900–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Naughton MT. Cheyne-Stokes respiration: friend or foe? Thorax. 2012;67:357–60.CrossRefPubMedGoogle Scholar
  54. 54.
    • Lyons OD, Floras JS, Logan AG, Beanlands R, Cantolla JD, Fitzpatrick M, et al. Design of the effect of adaptive servo-ventilation on survival and cardiovascular hospital admissions in patients with heart failure and sleep apnoea: the ADVENT-HF trial. Eur J Heart Fail. 2017;19(4):579–87. A study which should help us to determine the true effects of ASV in heart failure patients. CrossRefPubMedGoogle Scholar
  55. 55.
    • O’Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ, et al. Cardiovascular outcomes with minute ventilation—targeted adaptive servo-ventilation therapy in heart failure. J Am Coll Cardiol. 2017;69(12):1577–158. Raises questions about the impact of ASV in HFpEf. CrossRefPubMedGoogle Scholar
  56. 56.
    Bitter T, Westerheide N, Faber L, Hering D, Prinz C, Langer C, et al. Adaptive servoventilation in diastolic heart failure and Cheyne-Stokes respiration. Eur Respir J. 2010;36(2):385–92.CrossRefPubMedGoogle Scholar
  57. 57.
    Yoshihisa A, Suzuki S, Yamaki T, Sugimoto K, Kunii H, Nakazato K, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013;15(5):543–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Heider K, Arzt M, Lerzer C, Kolb L, Pfeifer M, Maier LS, Gfüllner F, Malfertheiner MV. Adaptive servo-ventilation and sleep quality in treatment emergent central sleep apnea and central sleep apnea in patients with heart disease and preserved ejection fraction. Clin Res Cardiol. 2018.  https://doi.org/10.1007/s00392-018-1203-9.
  59. 59.
    Zhang XL, Ding N, Wang H, Augostini R, Yang B, Xu D, et al. Transvenous phrenic nerve stimulation in patients with Cheyne-Stokes respiration and congestive heart failure. Chest. 2012;142(4):927–34.CrossRefPubMedGoogle Scholar
  60. 60.
    Oldenburg O, Augostini R, Krueger S, Kolodziej A, Gutleben KJ, Khayat R, et al. Phrenic nerve stimulation for the treatment of central sleep apnea. JACC Heart Fail. 2015;3(5):360–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Jagielski D, Ponikowski P, Augostini R, Kolodziej A, Khayat R, Abraham WT. Transvenous stimulation of the phrenic nerve for the treatment of central sleep apnea: 12 months experience with Remedē System. Eur J Heart Fail. 2016;18:1386–93.CrossRefPubMedGoogle Scholar
  62. 62.
    Fox H, Bitter T, Horstkotte D, Oldenburg O, Gutleben KJ. Long-term experience with first-generation implantable neurostimulation device in central sleep apnea. Pacing Clin Electrophysiol. 2017;40(5):498–503.CrossRefPubMedGoogle Scholar
  63. 63.
    • Costanzo MR, Ponikowski P, Javaheri S, Augostini R, Goldberg L, Holcomb R, et al. Transvenous neurostimulation for central sleep apnoea: a randomized controlled trial. Lancet. 2016;388:974–82. Demonstration that central sleep apnea can be successfully treated with phrenic pacing. CrossRefPubMedGoogle Scholar
  64. 64.
    • Iturriaga R, Del Rio R, Idiaquez J, Somers VK. Carotid body chemoreceptor, sympathetic neural activation and cardiometabolic disease. Biol Res. 2016;49:13. Interesting concept that CSA can be treated by addressing carotid body chemoreceptors. Google Scholar
  65. 65.
    Del Rio R, Andrade DC, Marcus NJ, Schultz HD. Selective carotid body ablation in experimental heart failure: a new therapeutic tool to improve cardiorespiratory control. Exp Physiol. 2015;100(2):136–42. Excellent review of mechanisms by which the carotid body might impact respiration. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Marcus NJ, Del Rio R, Schultz EP, Xia XH, Schultz HD. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J Physiol. 2014;592(2):391–408.Google Scholar
  67. 67.
    Niewinski P. Carotid body modulation in systolic heart failure from the clinical perspective. J Physiol. 2017;595(1):53–61.Google Scholar
  68. 68.
    • Pinna GD, Robbi E, La Rovere MT, Taurino AE, Bruschi C, Guazzotti G, et al. Differential impact of body position on the severity of disordered breathing in heart failure patients with obstructive vs. central sleep apnoea. Eur J Heart Fail. 2015;17:1302–9. In both CSA and OSA, AHI markedly decreased from the supine to the lateral position. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Connor P. Oates
    • 1
  • Manjula Ananthram
    • 1
  • Stephen S. Gottlieb
    • 1
  1. 1.School of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations