Skip to main content
Log in

Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials

  • Clinical Trials (J. Butler, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This review discusses the integral role of the nitric oxide (NO) pathway in the pathophysiology of heart failure (HF). We emphasize potential therapeutic targets in the NO pathway and review contemporary clinical trials evaluating these novel therapeutic options.

Recent findings

Nitrates, neprilysin inhibitors, and phosphodiesterase (PDE) inhibitors have all proven to be efficacious in HF patients with systolic dysfunction, with the former two classes of medications producing a net mortality benefit. However, neither PDE inhibitors nor nitrates have demonstrated significant clinical benefit in patients with HF with preserved ejection fraction (HFpEF), and neprilysin inhibitors have yet to be evaluated in this population. Soluble guanylate cyclase (sGC) stimulators have shown significant promise in all HF patients, leading to improvements in both quality of life scores and exercise capacity. Conversely, sGC activators have limited clinical utility in HF, owing largely to safety concerns of hypotension. Inorganic nitrates and nitrites, meanwhile, may be emerging as potential therapies for the HFpEF population.

Summary

The advent of novel therapies targeting the NO pathway is beginning to create a paradigm shift in the treatment of the HF patient. These therapies offer a promising outlook for the future, with hopes of reducing HF-associated morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360. https://doi.org/10.1161/CIR.0000000000000350.

    Article  PubMed  Google Scholar 

  2. Gheorghiade M, Adams KF, Cleland JG, Cotter G, Felker GM, Filippatos GS, et al. Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. Am Heart J. 2009;157(6):957–70. https://doi.org/10.1016/j.ahj.2009.04.010.

    Article  PubMed  Google Scholar 

  3. Chirinos JA, Zamani P. The nitrate-nitrite-NO pathway and its implications for heart failure and preserved ejection fraction. Curr Heart Fail Rep. 2016;13(1):47–59. https://doi.org/10.1007/s11897-016-0277-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res. 2011;89:525–32.

    Article  CAS  PubMed  Google Scholar 

  5. Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Important article demonstrating the increased conversion of nitrite to NO in the context of hypoxia. Circulation. 2008;117:670–7.

    Article  CAS  PubMed  Google Scholar 

  6. Modin A, Bjorne H, Herulf M, et al. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Important article demonstrating the increased conversion of nitrite to NO in the context of acidemia. Acta Physiol Scand. 2001;171:9–16.

    CAS  PubMed  Google Scholar 

  7. Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Böhm M, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev. 2013;18:123–34. https://doi.org/10.1007/s10741-012-9323-1.

    Article  CAS  PubMed  Google Scholar 

  8. • Greene SJ, Gheorghiade M, Borlaug BA, et al. The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J Am Heart Assoc. 2013;2(6):e000536. https://doi.org/10.1161/JAHA.113.000536. This review details the role and alterations of the cGMP pathway in the HFpEF patient and highlights potential therapeutic strategies targeting this crucial pathway

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994;89(5):2070–8.

    Article  CAS  PubMed  Google Scholar 

  10. Varin R, Mulder P, Tamion F, et al. Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure : role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation. 2000;102(3):351–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res. 1996;78(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  12. Paulus WJ, Bronzwaer JG. Nitric oxide’s role in the heart: control of beating or breathing? Am J Physiol Heart Circ Physiol. 2004;287(1):H8–13.

    Article  CAS  PubMed  Google Scholar 

  13. Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741–8. https://doi.org/10.1093/eurheartj/ehq396.

    Article  PubMed  CAS  Google Scholar 

  14. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HHHW, Stasch JP. NO independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munzel T, Genth-Zotz S, Hink U. Targeting heme-oxidized soluble guanylate cyclase: solution for all cardiorenal problems in heart failure? Hypertension. 2007;49:974–6.

    Article  PubMed  CAS  Google Scholar 

  16. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009;196(2):193–222. https://doi.org/10.1111/apha.12646.

    Article  CAS  Google Scholar 

  17. Schmidt HH, Hofmann F, Stasch JP. Handbook of experimental pharmacology. cGMP generators, effectors and therapeutic implications. Handb Exp Pharmacol. 2009;191:v–vi.

    Google Scholar 

  18. Ben Driss A, Devaux C, Henrion D, et al. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation. 2000;101(23):2764–70.

    Article  CAS  PubMed  Google Scholar 

  19. Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000;102(14):1718–23.

    Article  CAS  PubMed  Google Scholar 

  20. Blair JE, Manuchehry A, Chana A, et al. Prognostic markers in heart failure—congestion, neurohormones, and the cardiorenal syndrome. Acute Card Care. 2007;9(4):207–13.

    Article  PubMed  Google Scholar 

  21. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81(3):772–9.

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell AJ, Schauble E, Bernstein D, Cooke JP. Limb blood flow during exercise is dependent on nitric oxide. Circulation. 1998;98(4):369–74.

    Article  CAS  PubMed  Google Scholar 

  23. Prasad A, Higano ST, Al Suwaidi J, et al. Abnormal coronary microvascular endothelial function in humans with asymptomatic left ventricular dysfunction. Am Heart J. 2003;146(3):549–54. https://doi.org/10.1016/S0002-8703(03)00364-8.

    Article  PubMed  Google Scholar 

  24. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111(3):310–4. https://doi.org/10.1161/01.CIR.0000153349.77489.CF.

    Article  PubMed  Google Scholar 

  25. Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, et al. Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J. 2005;26(1):65–9. https://doi.org/10.1093/eurheartj/ehi001.

    Article  CAS  PubMed  Google Scholar 

  26. Meyer B, Mortl D, Strecker K, et al. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol. 2005;46(6):1011–8. https://doi.org/10.1016/j.jacc.2005.04.060.

    Article  PubMed  Google Scholar 

  27. Mathier MA, Rose GA, Fifer MA, et al. Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1998;32(1):216–24.

    Article  CAS  PubMed  Google Scholar 

  28. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98(24):2709–15.

    Article  CAS  PubMed  Google Scholar 

  29. Elkayam U, Roth A, Mehra A, Ostrzega E, Shotan A, Kulick D, et al. Randomized study to evaluate the relation between oral isosorbide dinitrate dosing interval and the development of early tolerance to its effect on left ventricular filling pressure in patients with chronic heart failure. Circulation. 1991;84:2040–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mehra A, Ostrzega E, Shotan A, Johnson JV, Elkayam U. Persistent hemodynamic improvement with short-term nitrate therapy in patients with chronic congestive heart failure already treated with captopril. Am J Cardiol. 1992;70:1310–4.

    Article  CAS  PubMed  Google Scholar 

  31. Ito N, Bartunek J, Spitzer KW, Lorell BH. Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. Circulation. 1997;95:2303–11.

    Article  CAS  PubMed  Google Scholar 

  32. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994;74:970–8.

    Article  CAS  PubMed  Google Scholar 

  33. Elkayam U, Johnson JV, Shotan A, Bokhari S, Solodky A, Canetti M, et al. Double-blind, placebo controlled study to evaluate the effect of organic nitrates in patients with chronic heart failure treated with angiotensin-converting enzyme inhibition. Circulation. 1999;99:2652–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10.

    Article  CAS  PubMed  Google Scholar 

  35. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314:1547–52.

    Article  CAS  PubMed  Google Scholar 

  36. Schwarz M, Katz SD, Demopoulos L, Hirsch H, Yuen JL, Jondeau G, et al. Enhancement of endothelium-dependent vasodilation by low-dose nitroglycerin in patients with congestive heart failure. Circulation. 1994;89:1609–14.

    Article  CAS  PubMed  Google Scholar 

  37. Leier CV, Huss P, Magorien RD, Unverferth DV. Improved exercise capacity and differing arterial and venous tolerance during chronic isosorbide dinitrate therapy for congestive heart failure. Circulation. 1983;67:817–22.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351(20):2049–57.

    Article  CAS  PubMed  Google Scholar 

  39. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24. https://doi.org/10.1056/NEJMoa1510774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–28.

    Article  PubMed  CAS  Google Scholar 

  41. Gupta D, Georgiopoulou VV, Kalogeropoulos AP, Marti CN, Yancy CW, Gheorghiade M, et al. Nitrate therapy for heart failure: benefits and strategies to overcome tolerance. JACC Heart Fail. 2013;1(3):183–91. https://doi.org/10.1016/j.jchf.2013.03.003.

    Article  PubMed  Google Scholar 

  42. Elkayam U, Bitar F. Effects of nitrates and hydralazine in heart failure: clinical evidence before the African American Heart Failure Trial. Am J Cardiol. 2005;96:37i–43i.

    Article  CAS  PubMed  Google Scholar 

  43. Hare JM. Nitroso-redox balance in the cardiovascular system. N Engl J Med. 2004;351:2112–4.

    Article  CAS  PubMed  Google Scholar 

  44. Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, Munzel T. Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. Circulation. 1999;99:3181–7.

    Article  CAS  PubMed  Google Scholar 

  45. Katz SD. Mechanisms and Implications of endothelial dysfunction in congestive heart failure. Curr Opin Cardiol. 1997;12:259–64.

    Article  CAS  PubMed  Google Scholar 

  46. Pizzulli L, Hagendorff A, Zirbes M, Fehske W, Ewig S, Jung W, et al. Influence of captopril on nitroglycerin-mediated vasodilation and development of nitrate tolerance in arterial and venous circulation. Am Heart J. 1996;131:342–9.

    Article  CAS  PubMed  Google Scholar 

  47. Watanabe H, Kakihana M, Ohtsuka S, Sugishita Y. Preventive effects of angiotensin-converting enzyme inhibitors on nitrate tolerance during continuous transdermal application of nitroglycerin in patients with chronic heart failure. Jpn Circ J. 1998;62:353–8.

    Article  CAS  PubMed  Google Scholar 

  48. Stork T, Eichstadt H, Mockel M, Gareis R, Bodemann T, Muller R. Hemodynamic action of captopril in coronary patients with heart failure tolerant to nitroglycerin. Clin Cardiol. 1997;20:999–1004.

    Article  CAS  PubMed  Google Scholar 

  49. Desideri G, Grassi D, Croce G, et al. Different effects of angiotensin converting enzyme inhibitors on endothelin-1 and nitric oxide balance in human vascular endothelial cells: evidence of an oxidant-sensitive pathway. Mediat Inflamm. 2008;2008:305087.

    Article  CAS  Google Scholar 

  50. Dakak N, Makhoul N, Flugelman MY, Merdler A, Shehadeh H, Schneeweiss A, et al. Failure of captopril to prevent nitrate tolerance in congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1990;66:608–13.

    Article  CAS  PubMed  Google Scholar 

  51. Parker JD, Parker JO. Effect of therapy with an angiotensin-converting enzyme inhibitor on hemodynamic and counterregulatory responses during continuous therapy with nitroglycerin. J Am Coll Cardiol. 1993;21:1445–53.

    Article  CAS  PubMed  Google Scholar 

  52. Dupuis J, Lalonde G, Bichet D, Rouleau JL. Captopril does not prevent nitroglycerin tolerance in heart failure. Can J Cardiol. 1990;6:281–6.

    CAS  PubMed  Google Scholar 

  53. Chirkov YY, De Sciscio M, Sverdlov AL, et al. Hydralazine does not ameliorate nitric oxide resistance in chronic heart failure. Cardiovasc Drugs Ther. 2010;24:131–7.

    Article  CAS  PubMed  Google Scholar 

  54. Parker JD, Parker AB, Farrell B, Parker JO. The effect of hydralazine on the development of tolerance to continuous nitroglycerin. J Pharmacol Exp Ther. 1997;280:866–75.

    CAS  PubMed  Google Scholar 

  55. Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, et al. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res. 2009;32(7):597–603. https://doi.org/10.1038/hr.2009.64.

    Article  CAS  PubMed  Google Scholar 

  56. Jones ES, Kemp-Harper B, Stasch JP, Schmidt H, Widdop RE. Cardioprotective effects in aged spontaneously hypertensive rats due to chronic stimulation/activation of sGC without hypotension. BMC Pharmacol 2009: 9(Suppl 1):P29 (abstr). doi: https://doi.org/10.1186/1471-2210-9-S1-P29

  57. Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, et al. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens. 2010;28(8):1666–75. https://doi.org/10.1097/HJH.0b013e32833b558c.

    Article  CAS  PubMed  Google Scholar 

  58. Boerrigter G, Costello-Boerrigter LC, Cataliotti A, Tsuruda T, Harty GJ, Lapp H, et al. Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation. 2003;107(5):686–9.

    Article  CAS  PubMed  Google Scholar 

  59. Benz K, Orth SR, Simonaviciene A, Linz W, Schindler U, Rütten H, et al. Blood pressure-independent effect of long term treatment with the soluble heme-independent guanylyl cyclase activator HMR1766 on progression in a model of non inflammatory chronic renal damage. Kidney Blood Press Res. 2007;30(4):224–33.

    Article  CAS  PubMed  Google Scholar 

  60. Stasch JP, Hobbs AJ. NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol. 2009;191:277–308. https://doi.org/10.1007/978-3-540-68964-5_13.

    Article  CAS  Google Scholar 

  61. Fraccarollo D, Galuppo P, Motschenbacher S, et al. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol. 2014;109(4):421. https://doi.org/10.1007/s00395-014-0421-1.

    Article  PubMed  CAS  Google Scholar 

  62. Lapp H, Mitrovic V, Franz N, Heuer H, et al. Cinaciguat (BAY 58–2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation. 2009;119(21):2781–8. https://doi.org/10.1161/CIRCULATIONAHA.108.800292.

    Article  CAS  PubMed  Google Scholar 

  63. Erdmann E, Semigran MJ, Nieminen MS, Gheorghiade M, Agrawal R, Mitrovic V, et al. Cinaciguat, a soluble guanylate cyclase activator, unloads the heart but also causes hypotension in acute decompensated heart failure. Eur Heart J. 2013;34(1):57–67. https://doi.org/10.1093/eurheartj/ehs196.

    Article  CAS  PubMed  Google Scholar 

  64. Gheorghiade M, Erdmann E, Ferrari R, Filippatos G, Levy PD, Maggioni A, et al. Treatment of acute decompensated heart failure with the soluble guanylate cyclase activator cinaciguat: the COMPOSE program—three randomized, controlled, phase IIb studies. J Card Fail. 2011;17(11):971. https://doi.org/10.1016/j.cardfail.2011.10.004.

    Article  Google Scholar 

  65. Ghofrani HA, D'Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29. https://doi.org/10.1056/NEJMoa1209657.

    Article  CAS  PubMed  Google Scholar 

  66. Simonneau G, D’Armini AM, Ghofrani HA, Grimminger F, Hoeper MM, Jansa P, et al. Riociguat for the treatment of the chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur Respir J. 2015;45(5):1293–302. https://doi.org/10.1183/09031936.00087114.

    Article  CAS  PubMed  Google Scholar 

  67. Bonderman D, Ghio S, Felix SB, et al. Riociguat for patients with pulmonary hypertension due to systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11. https://doi.org/10.1161/CIRCULATIONAHA.113.001458.

    Article  CAS  PubMed  Google Scholar 

  68. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, et al. Acute hemodynamic of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–85. https://doi.org/10.1378/chest.14-0106.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gheorghiade M, Greene SJ, Butler J, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED Randomized Trial. JAMA. 2015;314(21):2251–62. https://doi.org/10.1001/jama.2015.15734.

    Article  CAS  PubMed  Google Scholar 

  70. • Pieske B, Maggioni AP, CSP L, et al. Vericiguat in patients with chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArt failure patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27. https://doi.org/10.1093/eurheartj/ehw593. This recently published trial is one of the first major trials to suggest possible benefit of sGC stimulators in the HFpEF population warranting further studies at higher doses to potentially uncover a therapy to modify long term outcomes in this patient population

    Article  PubMed  PubMed Central  Google Scholar 

  71. clinicaltrials.gov. Bethesda (MD). National Library of Medicine (US). Identifier NCT02861534. A study of vericiguat in participants with heart failure with reduced ejection fraction (HFrEF) (MK-1242-001) (VICTORIA). Available from: https://clinicaltrials.gov/ct2/show/NCT02861534

  72. Mullershausen F, Russwurm M, Koesling D, Friebe A. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation. Mol Biol Cell. 2004;15:4023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA. Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation. 2005;112:2642–9.

    Article  CAS  PubMed  Google Scholar 

  74. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.

    Article  CAS  PubMed  Google Scholar 

  75. Katz SD, Balidemaj K, Homma S, Wu H, Wang J, Maybaum S. Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol. 2000;36:845–51.

    Article  CAS  PubMed  Google Scholar 

  76. Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136–44.

    Article  CAS  PubMed  Google Scholar 

  77. Guazzi M, Vicenzi M, Arena R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail. 2012;14:82–90. https://doi.org/10.1093/eurjhf/hfr147.

    Article  CAS  PubMed  Google Scholar 

  78. Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116:1555–62.

    Article  CAS  PubMed  Google Scholar 

  79. Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4:8–17. https://doi.org/10.1161/CIRCHEARTFAILURE.110.944694.

    Article  CAS  PubMed  Google Scholar 

  80. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized trial. JAMA. 2013;309(12):1268–77. https://doi.org/10.1001/jama.2013.2024.

    Article  CAS  PubMed  Google Scholar 

  81. Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124:16f4–174. https://doi.org/10.1161/CIRCULATIONAHA.110.983866.

    Article  CAS  Google Scholar 

  82. Castro LR, Verde I, Cooper DM, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006;113:2221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, et al. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007;115:2159–67.

    Article  CAS  PubMed  Google Scholar 

  84. Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem. 1998;273:15553–8.

    Article  CAS  PubMed  Google Scholar 

  85. Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem. 1998;273:15559–64.

    Article  CAS  PubMed  Google Scholar 

  86. Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, et al. Phosphodiesterase 9A controls nitric-oxide independent cGMP and hypertrophic heart disease. Nature. 2015;519(7544):472–6. https://doi.org/10.1038/nature14332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Menendez JT. The mechanism of action of LCZ696. Card Fail Rev. 2016;2(1):40–6. https://doi.org/10.15420/cfr.2016:1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106(8):920–6.

    Article  CAS  PubMed  Google Scholar 

  89. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  90. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  PubMed  CAS  Google Scholar 

  91. Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS, Ge J, et al. Angiotensin receptor Neprilysin inhibition in heart failure with preserved ejection fraction. JACC Heart Fail. Jul 2017;5(7):471–82. https://doi.org/10.1016/j.jchf.2017.04.013.

    Article  PubMed  Google Scholar 

  92. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304. https://doi.org/10.1093/eurjhf/hfr133.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Weber T, Wassertheurer S, O’Rourke MF, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83. https://doi.org/10.1016/j.jacc.2013.02.013.

    Article  PubMed  Google Scholar 

  94. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74. https://doi.org/10.1016/j.jacc.2011.02.055.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–70. https://doi.org/10.1152/ajpheart.00004.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. The effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131:371–80. https://doi.org/10.1161/CIRCULATIONAHA.114.012957.

    Article  CAS  PubMed  Google Scholar 

  97. Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89:574–85. https://doi.org/10.1093/cvr/cvq366.

    Article  PubMed  CAS  Google Scholar 

  98. Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65:320–7. https://doi.org/10.1161/HYPERTENSIONAHA.114.04675.

    Article  CAS  PubMed  Google Scholar 

  99. Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide. 2012;26:197–202. https://doi.org/10.1016/j.niox.2012.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97. https://doi.org/10.1016/j.freeradbiomed.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  101. clinicaltrials.gov. Bethesda (MD). National Library of Medicine (US). Identifier NCT02742129. Improve Exercise Capacity in HFpEF (INDIE-HFpEF) . Available from: https://clinicaltrials.gov/ct2/show/NCT02742129

  102. Antoniades C, Bakogiannis C, Leeson P, Guzik TJ, Zhang MH, Tousoulis D, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335–45. https://doi.org/10.1161/CIRCULATIONAHA.110.985150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol. 2003;58:719–31.

    Article  CAS  PubMed  Google Scholar 

  104. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  CAS  PubMed  Google Scholar 

  105. Tousoulis D, Antoniades C, Vassiliadou C, Toutouza M, Pitsavos C, Tentolouris C, et al. Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure. Eur J Heart Fail. 2005;7:1126–32.

    Article  CAS  PubMed  Google Scholar 

  106. Sharma K, Unmet Needs KDA. In cardiovascular science and medicine: heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96. https://doi.org/10.1161/CIRCRESAHA.115.302922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60:120–8. https://doi.org/10.1016/j.jacc.2012.02.055.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Edelmann F, Gelbrich G, Dungen HD, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol. 2011;58:1780–91. https://doi.org/10.1016/j.jacc.2011.06.054.

    Article  PubMed  Google Scholar 

  109. Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2010;3:659–67. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958785.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol. 2013;62:584–92. https://doi.org/10.1016/j.jacc.2013.04.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cruz L, Ryan JJ. Nitric oxide signaling in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2017;2(3):341–3. https://doi.org/10.1016/j.jacbts.2017.05.004.

    Article  Google Scholar 

  112. Munzel T, Kurz S, Rajagopalan S, et al. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest. 1996;98:1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng JW. A review of isosorbide dinitrate and hydralazine in the management of heart failure in black patients, with a focus on a new fixed-dose combination. Clin Ther. 2006;28:666–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Butler.

Ethics declarations

Conflict of Interest

Prabhjot Singh, Shilpa Vijaykumar, Andreas Kalogeroupoulos declare no conflicts of interest.

Javed Butler is a consultant for Amgen, Astra-Zeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, CVRx, Janssen, Luitpold, Medtronic, Novartis, Relypsa, Roche, Vifor, and ZS Pharma outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Trials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Vijayakumar, S., Kalogeroupoulos, A. et al. Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials. Curr Heart Fail Rep 15, 44–52 (2018). https://doi.org/10.1007/s11897-018-0383-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0383-y

Keywords

Navigation