Current Heart Failure Reports

, Volume 14, Issue 5, pp 398–403 | Cite as

Prevention of Chemotherapy Induced Cardiomyopathy

  • David L. PayneEmail author
  • Anju Nohria
Pathophysiology of Myocardia Failure (I Anand and M Patarroyo-Aponte, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pathophysiology of Myocardial Failure


Purpose of Review

Cardiomyopathy is a significant complication of various cancer treatments and has been best studied in patients receiving anthracyclines and trastuzumab. This paper evaluates strategies to prevent chemotherapy-induced cardiotoxicity.

Recent Findings

Increasing cumulative anthracycline dose, use of ≥2 cardiotoxic therapies, extremes of age, and pre-existing cardiovascular risk factors, or established cardiovascular disease, heighten the risk of developing chemotherapy-induced cardiomyopathy. Continuous rather than bolus anthracycline infusions, liposomal doxorubicin, or concomitant dexrazoxane reduces chemotherapy-induced cardiotoxicity. Treatment with neurohormonal antagonists or statins and exercise training during chemotherapy are promising, but as yet unproven, cardioprotective strategies.


Identification of high-risk patients and optimization of their underlying cardiovascular risk factors/disease are essential to prevent cardiotoxicity. In patients requiring high-dose anthracyclines, continuous infusions, liposomal doxorubicin, or dexrazoxane should be considered to mitigate cardiotoxicity. Current data do not support the routine use of neurohormonal antagonists or statins as cardioprotective agents in patients treated with cardiotoxic chemotherapies.


Cardiotoxicity Chemotherapy-induced cardiomyopathy Anthracyclines Cardio protectant Dexrazoxane Neurohormonal antagonists 


Compliance with Ethical Standards

Conflict of Interest

David L. Payne, BA and Anju Nohria, MD declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA-Cancer J Clin. 2016;66:7–30. doi: 10.3322/caac.21332.CrossRefPubMedGoogle Scholar
  2. 2.
    Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84. doi: 10.1056/NEJM200004133421502.CrossRefPubMedGoogle Scholar
  3. 3.
    Von Hoff DD, Layard MW, Basa P, Davis HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7. doi: 10.7326/0003-4819-91-5-710.CrossRefGoogle Scholar
  4. 4.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97:2869–79. doi: 10.1002/cncr.11407.CrossRefPubMedGoogle Scholar
  5. 5.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8. doi: 10.1161/CIRCULATIONAHA.114.013777.CrossRefPubMedGoogle Scholar
  6. 6.
    Van der Pal HJ, van Dalen EC, Hauptmann M, Kok WE, Caron HN, van den Bos C, et al. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch Intern Med. 2010;170:1247–55. doi: 10.1001/archinternmed.2010.233.PubMedGoogle Scholar
  7. 7.
    Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7:214–20. doi: 10.2174/1573403117999960645.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bria E, Cuppone F, Fornier M, Nistico C, Carlini P, Milella M, et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Tr. 2008;109:231–9. doi: 10.1007/s10549-007-9663-z.CrossRefGoogle Scholar
  9. 9.
    Hall PS, Harshman LC, Srinivas S, Witteles RM. The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients. JACC-Heart Fail. 2013;1:72–8. doi: 10.1016/j.jchf.2012.09.001.CrossRefPubMedGoogle Scholar
  10. 10.
    Heinzerling L, Ott PA, Hodi SF, Husain AN, Tajmir-Riahi A, Tawbi H, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunotherapy Cancer. 2016;4:50. doi: 10.1186/s40425-016-0152-y.CrossRefGoogle Scholar
  11. 11.
    Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–9. doi: 10.7326/0003-4819-96-2-133.CrossRefPubMedGoogle Scholar
  12. 12.
    Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systemic review and meta-analysis of randomized controlled trials. BMC Cancer. 2010;10:337. doi: 10.1186/1471-2407-10-337.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Brien ME, Wigler N, Inbar MC, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–9. doi: 10.1093/annonc.mdh097.CrossRefPubMedGoogle Scholar
  14. 14.
    Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–32. doi: 10.1200/JCO.1997.15.4.1318.CrossRefPubMedGoogle Scholar
  15. 15.
    Swain SM, Whaley FS, Gerber MC, Ewer MS, Bianchine JR, Gams RA. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. 1997;15:1333–40. doi: 10.1200/JCO.1997.15.4.1333.CrossRefPubMedGoogle Scholar
  16. 16.
    Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L, Nathan PC. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer I 2016:108. doi: 10.1093/inci/djv357.
  17. 17.
    •• Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2017;35:893–911. doi: 10.1200/JCO.2016.70.5400. This paper contains the 2016 guidelines from the American Society of Clinical Oncology regarding the prevention and monitoring of cardiac dysfunction in survivors of adult cancer. CrossRefPubMedGoogle Scholar
  18. 18.
    Toko H, Oka T, Zou Y, Sakamoto M, Mizukami M, Sano M, et al. Angiotensin II type 1a receptor mediates doxorubicin-induced cardiomyopathy. Hypertens Res. 2002;25:597–603. doi: 10.1291/hypres.25.597.CrossRefPubMedGoogle Scholar
  19. 19.
    Bien S, Riad A, Ritter CA, Gratz M, Olshausen F, Westermann D, et al. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Res. 2007;67:10428–35. doi: 10.1158/0008-5472.CAN-07-1344.CrossRefPubMedGoogle Scholar
  20. 20.
    Bernstein D, Fajardo G, Zhao M, Urashima T, Powers J, Berry G, et al. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol. 2005;289:H2441–9. doi: 10.1152/ajpheart.00005.2005.CrossRefPubMedGoogle Scholar
  21. 21.
    • Bosch X, Rovira M, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61:2355–62. doi: 10.1016/j.jacc.2013.02.072. Patients receiving concomitant enalapril and carvedilol had a smaller reduction in left ventricular ejection fraction compared to placebo in patients receiving high dose anthracycline therapy for hematologic malignancies. Furthermore, enalapril and carvedilol significantly reduced the combined end-point of heart failure and death relative to placebo. CrossRefPubMedGoogle Scholar
  22. 22.
    • Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101–breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2016;35:870–7. doi: 10.1200/JCO.2016.68.7830. In this study, pre-treatment with both bisoprolol and perindopril attenuated a decline in left ventricular ejection fraction in a group of HER2+ breast cancer patients undergoing treatment with trastuzumab. CrossRefPubMedGoogle Scholar
  23. 23.
    • Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37:1671–80. doi: 10.1093/eurheartj/ehw022. In this study, cardioprotective treatment with candesartan attenuated a decline in left ventricular ejection fraction in HER2+ breast cancer patients undergoing anthacycline-containing chemotherapy. Metoprolol cardioprotective treatment did not prevent a decline in left ventricular ejection fraction. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80. doi: 10.1016/j.amjcard.2011.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    • Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17:81–9. doi: 10.1002/ejhf.196. Concomitant spironolactone treatment was associated with preservation of systolic and diastolic heart function in breast cancer patients undergoing anthracycline-containing chemotherapy. CrossRefPubMedGoogle Scholar
  26. 26.
    Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, et al. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res. 2009;69:695–9. doi: 10.1158/0008-5472.CAN-08-3076.CrossRefPubMedGoogle Scholar
  27. 27.
    Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9. doi: 10.1016/j.jacc.2011.05.025.CrossRefPubMedGoogle Scholar
  28. 28.
    Chotenimitkhun R, D'Agostino R, Lawrence JA, Hamilton CA, Jordan JH, Vasu S, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31:302–7. doi: 10.1016/j.cjca.2014.11.020.CrossRefPubMedGoogle Scholar
  29. 29.
    Jones LW, Habel LA, Weltzien E, Castillo A, Gupta D, Kroenke CH, et al. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. Jpn J Clin Oncol. 2016;34:2743–9. doi: 10.1200/JCO.2015.65.6603.CrossRefGoogle Scholar
  30. 30.
    Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15:4963–7. doi: 10.1158/1078-0432.CCR-09-0628.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Cardio-Oncology ProgramBrigham and Women’s Hospital/Dana Farber Cancer InstituteBostonUSA

Personalised recommendations