Thyroid Dysfunction and Heart Failure: Mechanisms and Associations

Abstract

Purpose of Review

The purpose of this review is to provide an update on the current knowledge of the pathophysiology, the mechanisms, and the cardiovascular impact of the different stages of thyroid dysfunction (TD) in heart failure (HF) patients.

Recent Finding

The influence of thyroid hormones (THs) on the cardiovascular system involves the regulation of key processes related to maintenance of cardiac function; however, there are no long-term studies available showing that intervening the TD changes the incidence or the prognosis in HF individuals. Future research shall focus on the effects of cardiovascular morbidity and mortality associated with different treatment modalities for hyper and hypothyroidism.

Summary

TD has been associated with different clinical results in HF individuals; treatment with THs in patients with hypothyroidism improves cardiovascular risk factors, but the effect on cardiovascular events has not been assessed in randomized, controlled trials.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Buja A, Giuliana Solinas G, Visca M, Federico B, Gini R, Baldo V, et al. Int J Environ Res Public Health. 2016;13:238. doi:10.3390/ijerph13020238.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.

    Article  PubMed  Google Scholar 

  3. 3.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.

    Article  PubMed  Google Scholar 

  4. 4.

    Deschaseaux C, McSharry M, Hudson E, Agrawal R, Turner SJ. Treatment initiation patterns, modifications, and medication adherence among newly diagnosed heart failure patients: a retrospective claims database analysis. J Manag Care Spec Pharm. 2016;22(5):561–71.

    Article  PubMed  Google Scholar 

  5. 5.

    Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39–55.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Taylor PN, Razvi S, Pearce SH, Dayan CM. A review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab. 2013;98:3562–71.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cappola AR, Arnold AM, Wulczyn K, Carlson M, Robbins J, Psaty BM. Thyroid function in the euthyroid range and adverse outcomes in older adults. J Clin Endocrinol Metab. 2015;100:1088–96.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Wiersinga WM. Guidance in subclinical hyperthyroidism and subclinical hypothyroidism: are we making progress? Eur Thyroid J. 2015;4(3):143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Taylor PN, Iqbal A, Minassian C, Sayers A, Draman MS, Greenwood R, et al. Failing threshold for treatment of borderline elevated thyrotropin levels – balancing benefits and risks: evidence from a large community-based study. JAMA Intern Med. 2014;174:32–9.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. New Eng J Med. 2001;344(7):501–9.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. 2007;92(5):1715–23.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sam S, Frohman LA. Normal physiology of hypothalamic pituitary regulation. Endocrinol Metab Clin North Am. 2008;37:1–22.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Olvera A, Mendoza A, Villalobos P, Mayorga-Martínez L, Orozco A, Valverde-R C. The variable region of iodothyronine deiodinases directs their catalytic properties and subcellular localization. Mol Cell Endocrinol. 2015;402:107–12.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lin JZ, Sieglaff DH, Yuan C, Su J, Arumanayagam AS, Firouzbakht S, et al. Gene specific actions of thyroid hormone receptor subtypes. PLoS ONE. 2013;8(1):e52407. doi:10.1371/journal.pone.0052407.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Flamant F, Gauthier K. Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta. 1830;2013:3900–7.

    Google Scholar 

  17. 17.

    Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta. 2013;1830(7):3876–81.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Senese R, Federica Cioffi F, de Lange P, Goglia F, Lanni A. Thyroid: biological actions of ‘nonclassical’ thyroid hormones. J Endocrinol. 2014;221(2):R1–12.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    • Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol (Lausanne). 2015;6:177. doi:10.3389/fendo.2015.00177. Selected reference that describes in depth and at the highest level the most important aspects about “Homeostatic Control of the Thyroid-Pituitary Axis”.

    Google Scholar 

  20. 20.

    Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol. 2011;51:99–115.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hammes SR, Davis PJ. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab. 2015;29:581–93.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Takeshige K, Sekido T, Kitahara J, Ohkubo Y, Hiwatashi D, Ishii H, et al. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells. Endocr J. 2014;61(6):561–70.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A. 2006;103(38):14104–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    • Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12(2):111–21. Selected reference that describes in depth and at the highest level the most important aspects about “Nongenomic actions of thyroid hormone”.

    CAS  PubMed  Google Scholar 

  26. 26.

    Szumska J, Qatato M, Rehders M, Führer D, Biebermann H, Grandy DK, et al. Trace amine-associated receptor 1 localization at the apical plasma membrane domain of fisher rat thyroid epithelial cells is confined to cilia. Eur Thyroid J. 2015;4 Suppl 1:30–41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cöster M, Biebermann H, Schöneberg T, Stäubert C. Evolutionary conservation of 3-Iodothyronamine as an agonist at the trace amine-associated receptor 1. Eur Thyroid J. 2015;4 Suppl 1:9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wang C, Liu Y, Cao JM. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. Int J Mol Sci. 2014;15(9):15412–25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Davis PJ, Tillmann HC, Davis FB, Wehling M. Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J Endocrinol Invest. 2002;25:377–88.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Davis PJ, Davis FB, Cody V. Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab. 2005;16:429–35.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    •• Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol. 2016;56(3):73–97. This is a comprehensive discussion about the role of co-regulators in transcriptional actions of thyroid hormones.

  32. 32.

    Schmidt-Ott UM, Ascheim DD. Thyroid hormone and heart failure. Curr Heart Fail Rep. 2006;3(3):114–9.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    •• Klein I, Danzi S. Thyroid disease and the heart. Curr Probl Cardiol. 2016;41(2):65–92. This is a narrative review about of the role of thyroid hormones in different aspects of cardiovascular system.

  34. 34.

    Chaker L, Heeringa J, Dehghan A, Medici M, Visser WE, Baumgartner C, et al. Normal thyroid function and the risk of atrial fibrillation: the Rzotterdam study. J Clin Endocrinol Metab. 2015;100(10):3718–24.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc Res. 2016;109(4):527–41.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Karthik S, Pal GK, Nanda N, Hamide A, Bobby Z, Amudharaj D, et al. Sympathovagal imbalance in thyroid dysfunctions in females: correlation with thyroid profile, heart rate and blood pressure. Indian J Physiol Pharmacol. 2009;53(3):243–52.

    CAS  PubMed  Google Scholar 

  37. 37.

    Valente M, De Santo C, de Martino RP, Di Maio V, Di Meo S, De Leo T. The direct effect of the thyroid hormone on cardiac chronotropism. Arch Int Physiol Biochim. 1989;97(6):431–40.

    CAS  PubMed  Google Scholar 

  38. 38.

    Zarain-Herzberg A, Estrada-Avilés R, Fragoso-Medina J. Regulation of sarco(endo)plasmic reticulum Ca2 + -ATPase and calsequestrin gene expression in the heart. Regulation of sarco(endo)plasmic reticulum Ca2 + -ATPase and calsequestrin gene expression in the heart. Can J Physiol Pharmacol. 2012;90(8):1017–28.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Zarain-Herzberg A. Regulation of the sarcoplasmic reticulum Ca2 + -ATPase expression in the hypertrophic and failing heart. Can J Physiol Pharmacol. 2006;84(5):509–21.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Martinez F. Thyroid hormones and heart failure. Heart Fail Rev. 2016. doi:10.1007/s10741-016-9556-5.

    PubMed  Google Scholar 

  41. 41.

    Danzi S, Klein I. Thyroid hormone and the cardiovascular system. Minerva Endocrinol. 2004;29(3):139–50.

    CAS  PubMed  Google Scholar 

  42. 42.

    Christ-Crain M, Morgenthaler NG, Meier C, Müller C, Nussbaumer C, Bergmann A, et al. Pro-A-type and N-terminal pro-B-type natriuretic peptides in different thyroid function states. Swiss Med Wkly. 2005;135(37-38):454–549.

    Google Scholar 

  43. 43.

    Ozmen B, Ozmen D, Parildar Z, Mutaf I, Bayindir O. Serum N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) levels in hyperthyroidism and hypothyroidism. Endocr Res. 2007;32(1-2):1–8.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Young R, Worthley LI. Current concepts in the management of heart failure. Crit Care Resusc. 2004;6(1):31–53.

    CAS  PubMed  Google Scholar 

  45. 45.

    Fadel BM, Ellahham S, Ringel MD, Lindsay Jr J, Wartofsky L, Burman KD. Hyperthyroid heart disease. Clin Cardiol. 2000;23(6):402–8.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Dahl P, Danzi S, Klein I. Thyrotoxic cardiac disease. Curr Heart Fail Rep. 2008;5(3):170–6.

    Article  PubMed  Google Scholar 

  47. 47.

    Biondi B, Palmieri EA, Lombardi G, Fazio S. Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab. 2002;87(3):968–74.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Patel H, Madanieh R, Kosmas CE, Vatti SK, Vittorio TJ. Reversible cardiomyopathies. Clin Med Insights Cardiol. 2015;9 Suppl 2:7–14.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Accorroni A, Saponaro F, Zucchi R. Tissue thyroid hormones and thyronamines. Heart Fail Rev. 2016. doi:10.1007/s10741-016-9553-8.

    PubMed  Google Scholar 

  50. 50.

    Stănescu C, Branidou K, Ranetti EA. Heart failure and dilated cardiomyopathy associated with severe longstanding untreated hypothyroidism. Rom J Intern Med. 2007;45(1):77–83.

    PubMed  Google Scholar 

  51. 51.

    Grais IM, Sowers JR. Thyroid and the heart. Am J Med. 2014;127(8):691–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Seol MD, Lee YS, Kim DK, Choi YH, Kim DJ, Park SH, et al. Dilated cardiomyopathy secondary to hypothyroidism: case report with a review of literatures. J Cardiovasc Ultrasound. 2014;22(1):32–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ichiki T. Thyroid hormone and vascular remodeling. J Atheroscler Thromb. 2016;23(3):266–75.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, et al. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016;2016:6757154. doi:10.1155/2016/6757154.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Tibaldi JM, Surks MI. Effects of nonthyroidal illness on thyroid function. Med Clin North Am. 1985;69(5):899–911.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Hulbert AJ. Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc. 2000;75(4):519–631.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Economidou F, Douka E, Tzanela M, Nanas S, Kotanidou A. Thyroid function during critical illness. Hormones (Athens). 2011;10(2):117–24.

    Article  Google Scholar 

  58. 58.

    Bello G, Ceaichisciuc I, Silva S, Antonelli M. The role of thyroid dysfunction in the critically ill: a review of the literature. Minerva Anestesiol. 2010;76(11):919–28.

    CAS  PubMed  Google Scholar 

  59. 59.

    Danzi S, Klein I. Thyroid disease and the cardiovascular system. Endocrinol Metab Clin North Am. 2014;43(2):517–28.

    Article  PubMed  Google Scholar 

  60. 60.

    Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep. 2015;12(2):141–9.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Triggiani V, Iacoviello M. Thyroid disorders in chronic heart failure: from prognostic set-up to therapeutic management. Endocr Metab Immune Disord Drug Targets. 2013;13(1):22–37.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Gencer B, Collet TH, Virgini V, Auer R, Rodondi N. Subclinical thyroid dysfunction and cardiovascular outcomes among prospective cohort studies. Endocr Metab Immune Disord Drug Targets. 2013;13(1):4–12.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Siu CW, Yeung CY, Lau CP, Kung AW, Tse HF. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart. 2007;93(4):483–7.

    Article  PubMed  Google Scholar 

  64. 64.

    Rodondi N, Bauer DC, Cappola AR, Cornuz J, Robbins J, Fried LP, et al. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. the Cardiovascular Health study. J Am Coll Cardiol. 2008;52:1152–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med. 2005;165(21):2460–6.

    Article  PubMed  Google Scholar 

  66. 66.

    Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, Cappola AR, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Thyroid Studies Collaboration. Circulation. 2012;126(9):1040–9.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Nanchen D, Gussekloo J, Westendorp RG, Stott DJ, Jukema JW, Trompet S, et al. Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J Clin Endocrinol Metab. 2012;97(3):852–61.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Hyland KA, Arnold AM, Lee JS, Cappola AR. Persistent subclinical hypothyroidism and cardiovascular risk in the elderly: the cardiovascular health study. J Clin Endocrinol Metab. 2013;98(2):533–40.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, et al. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1(1):48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Güder G, et al. Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol. 2013;168(1):300–5.

    Article  PubMed  Google Scholar 

  71. 71.

    Chen S, Shauer A, Zwas DR, Lotan C, Keren A, Gotsman I. The effect of thyroid function on clinical outcome in patients with heart failure. Eur J Heart Fail. 2014;16(2):217–26.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Perez AC, Jhund PS, Stott DJ, Gullestad L, Cleland JG, van Veldhuisen DJ, et al. Thyroid-stimulating hormone and clinical outcomes: the CORONA trial (controlled rosuvastatin multinational study in heart failure). JACC Heart Fail. 2014;2(1):35–40.

    Article  PubMed  Google Scholar 

  73. 73.

    Ning N, Gao D, Triggiani V, Iacoviello M, Mitchell JE, Ma R, et al. Prognostic role of hypothyroidism in heart failure: a meta-analysis. Medicine (Baltimore). 2015;94(30):e1159. doi:10.1097/MD.0000000000001159.

    Article  Google Scholar 

  74. 74.

    Ceresini G, Marina M, Lauretani F, Maggio M, Bandinelli S, Ceda GP, et al. Relationship between circulating thyroid-stimulating hormone, free thyroxine, and free triiodothyronine concentrations and 9-year mortality in euthyroid elderly adults. J Am Geriatr Soc. 2016;64(3):553–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Hamilton MA, Stevenson LW, Luu M, Walden JA. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol. 1990;16:91–5.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Opasich C, Pacini F, Ambrosino N, Riccardi PG, Febo O, Ferrari R, et al. Sick euthyroid syndrome in patients with moderate to-severe chronic heart failure. Eur Heart J. 1996;17:1860–6.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Pingitore A, Landi P, Taddei MC, Ripoli A, L’Abbate A, Iervasi G. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med. 2005;118:132–6.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Kozdag G, Ural D, Vural A, Agacdiken A, Kahraman G, Sahin T, et al. Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail. 2005;7:113–8.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Iacoviello M, Guida P, Guastamacchia E, Triggiani V, Forleo C, Catanzaro R, et al. Prognostic role of sub-clinical hypothyroidism in chronic heart failure outpatients. Curr Pharm Des. 2008;14:2686–92.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Passino C, Pingitore A, Landi P, Fontana M, Zyw L, Clerico A, et al. Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. J Cardiac Fail. 2009;15:35–40.

    CAS  Article  Google Scholar 

  81. 81.

    Triggiani V, Iacoviello M, Monzani F, Puzzovivo A, Guida P, Forleo C, et al. Incidence and prevalence of hypothyroidism in patients affected by chronic heart failure: role of amiodarone. Endocr Metab Immun Disord Drug Targets. 2012;12:86–94.

    CAS  Article  Google Scholar 

  82. 82.

    Asvold BO, Bjøro T, Platou C, Vatten LJ. Thyroid function and the risk of coronary heart disease: 12-year follow-up of the HUNT study in Norway. Clin Endocrinol (Oxf). 2012;77(6):911–7.

    Article  Google Scholar 

  83. 83.

    Biondi B. Mechanisms in endocrinology: heart failure and thyroid dysfunction. Eur J Endocrinol. 2012;167(5):609–18.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Wilson BE, Newmark SR. Thyrotoxicosis-induced congestive heart failure in an urban hospital. Am J Med Sci. 1994;308(6):344–8.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Gerdes AM. Restoration of thyroid hormone balance: a game changer in the treatment of heart failure? Am J Physiol Heart Circ Physiol. 2015;308(1):H1–10.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Pantos C, Mourouzis I, Cokkinos DV. Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev. 2010;15(2):143–54.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Chang KC, Figueredo VM, Schreur JH, Kariya K, Weiner MW, Simpson PC, et al. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. association with increased sarcoplasmic reticulum Ca2+-ATPase and α-myosin heavy chain in rat hearts. J Clin Invest. 1997;100:1742–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Carrillo-Sepulveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, et al. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res. 2010;85:560–70.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Balzan S, Del Carratore R, Nardulli C, Sabatino L, Lubrano V, Iervasi G. The stimulative effect of T3 and T4 on human myocardial endothelial cell proliferation, migration, and angiogenesis. J Clin Exp Cardiol. 2013;4:1–7.

    Google Scholar 

  90. 90.

    Zhang Y, Dedkov EI, Teplitsky D, Weltman NY, Pol CJ, Rajagopalan V, et al. Both hypothyroidism and hyperthyroidism. increase atrial fibrillation inducibility in rats. Circ Arrhythm Electrophysiol. 2013;6:952–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Hsu RB, Huang TS, Chen YS, Chu SH. Effect of triiodothyronine administration in experimental myocardial injury. J Endocrinol Invest. 1995;18:702–9.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hernando Vargas-Uricoechea.

Ethics declarations

Conflict of Interest

Hernando Vargas-Uricoechea and Anilza Bonelo-Perdomo declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Comorbidities of Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vargas-Uricoechea, H., Bonelo-Perdomo, A. Thyroid Dysfunction and Heart Failure: Mechanisms and Associations. Curr Heart Fail Rep 14, 48–58 (2017). https://doi.org/10.1007/s11897-017-0312-5

Download citation

Keywords

  • Heart failure
  • Thyroid hormones
  • Hyperthyroidism
  • Hypothyroidism