Skip to main content

Advertisement

Log in

Pharmacologic Approaches to Electrolyte Abnormalities in Heart Failure

  • Biomarkers of Heart Failure (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Electrolyte abnormalities are common in heart failure and can arise from a variety of etiologies. Neurohormonal activation from ventricular dysfunction, renal dysfunction, and heart failure medications can perturb electrolyte homeostasis which impact both heart failure-related morbidity and mortality. These include disturbances in serum sodium, chloride, acid-base, and potassium homeostasis. Pharmacological treatments differ for each electrolyte abnormality and vary from older, established treatments like the vaptans or acetazolamide, to experimental or theoretical treatments like hypertonic saline or urea, or to newer, novel agents like the potassium binders: patiromer and zirconium cyclosilicate. Pharmacologic approaches range from limiting electrolyte intake or directly repleting the electrolyte, to blocking or promoting their resorption, and to neurohormonal antagonism. Because of the prevalence and clinical impact of electrolyte abnormalities, understanding both the older and newer therapeutic options is and will continue to be necessity for the management of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verbrugge F, Steels P, Grieten L, Nijst P, Tang Wh And Mullens W. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65:480–92.

    Article  CAS  PubMed  Google Scholar 

  2. Ter Maaten J, Valente M, Metra M, Bruno N, O’connor C, Ponikowski P, et al. A combined clinical and biomarker approach to predict diuretic response in acute heart failure. Clin Res Cardiol. 2016;105:145–53.

    Article  PubMed  Google Scholar 

  3. Rossignol P, Dobre D, Mcmurray J, Swedberg K, Krum H, Van Veldhuisen D, et al. Incidence, determinants, and prognostic significance of hyperkalemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: results from the eplerenone in mild patients hospitalization and survival study in heart failure (emphasis-HF). Circ Heart Fail. 2014;7:51–8.

    Article  CAS  PubMed  Google Scholar 

  4. Vardeny O, Claggett B, Anand I, Rossignol P, Desai A, Zannad F, et al. Incidence, predictors, and outcomes related to hypo- and hyperkalemia in patients with severe heart failure treated with a mineralocorticoid receptor antagonist. Circ Heart Fail. 2014;7:573–9.

    Article  CAS  PubMed  Google Scholar 

  5. Khan S, Campia U, Chioncel O, Zannad F, Rossignol P, Maggioni A, et al. Changes in serum potassium levels during hospitalization in patients with worsening heart failure and reduced ejection fraction (from the Everest trial). Am J Cardiol. 2015;115:790–6.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper L, Mentz R, Gallup D, Lala A, Devore A, Vader J, et al. Serum bicarbonate in acute heart failure: relationship to treatment strategies and clinical outcomes. J Card Fail. 2016. doi:10.1016/j.cardfail.2016.01.007.

    Google Scholar 

  7. Klein L, O’connor C, Leimberger J, Gattis-Stough W, Pina I, Felker G, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the outcomes of a prospective trial of intravenous milrinone for exacerbations of chronic heart failure (optime-CHF) study. Circulation. 2005;111:2454–60.

    Article  CAS  PubMed  Google Scholar 

  8. Gheorghiade M, Rossi J, Cotts W, Shin D, Hellkamp A, Pina I, et al. Characterization and prognostic value of persistent hyponatremia in patients with severe heart failure in the escape trial. Arch Intern Med. 2007;167:1998–2005.

    Article  PubMed  Google Scholar 

  9. Grodin J, Simon J, Hachamovitch R, Wu Y, Jackson G, Halkar M, et al. Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol. 2015;66:659–66.

    Article  CAS  PubMed  Google Scholar 

  10. Grodin J, Verbrugge F, Ellis S, Mullens W, Testani J, Tang W. Importance of abnormal chloride homeostasis in stable chronic heart failure. Circ Heart Fail. 2016;9:E002453.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed M, Ekundayo O, Mujib M, Campbell R, Sanders P, Pitt B, et al. Mild hyperkalemia and outcomes in chronic heart failure: a propensity matched study. Int J Cardiol. 2010;144:383–8.

    Article  PubMed  Google Scholar 

  12. Testani J, Hanberg J, Arroyo J, Brisco M, Ter Maaten J, Wilson F, et al. Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail. 2016. doi:10.1002/ejhf.477.

    PubMed  Google Scholar 

  13. Pitt B, Bakris G, Ruilope LM, Dicarlo L, Mukherjee R, Investigators E. Serum potassium and clinical outcomes in the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (Ephesus). Circulation. 2008;118:1643–50.

    Article  CAS  PubMed  Google Scholar 

  14. Khan N, Nabeel M, Nan B, Ghali J. Chloride depletion alkalosis as a predictor of inhospital mortality in patients with decompensated heart failure. Cardiology. 2015;131:151–9.

    Article  CAS  PubMed  Google Scholar 

  15. Writing Committee M, Yancy C, Jessup M, Bozkurt B, Butler J, De Jr C, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:E240–327.

    Article  Google Scholar 

  16. Mcmurray J, Adamopoulos S, Anker S, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in Collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    Article  CAS  PubMed  Google Scholar 

  17. Cp K, Lott E, Lu J, Sm M, Ma J, Molnar M, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012;125:677–84.

    Article  Google Scholar 

  18. Rahimi K, Bennett D, Conrad N, Williams T, Basu J, Dwight J, et al. Risk prediction in patients with heart failure: a systematic review and analysis. Jacc Heart Fail. 2014;2:440–6.

    Article  PubMed  Google Scholar 

  19. Panciroli C, Galloni G, Oddone A, Marangoni E, Masa A, Cominesi W, et al. Prognostic value of hyponatremia in patients with severe chronic heart failure. Angiology. 1990;41:631–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wald R, Jaber B, Price L, Upadhyay A, Madias N. Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med. 2010;170:294–302.

    Article  CAS  PubMed  Google Scholar 

  21. Gheorghiade M, Abraham W, Albert N, Gattis Stough W, Greenberg B, O’connor C, et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the optimize-HF registry. Eur Heart J. 2007;28:980–8.

    Article  CAS  PubMed  Google Scholar 

  22. Konishi M, Haraguchi G, Ohigashi H, Sasaoka T, Yoshikawa S, Inagaki H, et al. Progression of hyponatremia is associated with increased cardiac mortality in patients hospitalized for acute decompensated heart failure. J Card Fail. 2012;18:620–5.

    Article  CAS  PubMed  Google Scholar 

  23. Shchekochikhin D, Schrier R, Lindenfeld J, Price L, Jaber B, Madias N. Outcome differences in community- versus hospital-acquired hyponatremia in patients with a diagnosis of heart failure. Circ Heart Fail. 2013;6:379–86.

    Article  CAS  PubMed  Google Scholar 

  24. Verbrugge F, Grodin J, Mullens W, Taylor D, Starling R, Tang W. Transient hyponatremia during hospitalization for acute heart failure. Am J Med. 2016;129(6):620–7.

    Article  CAS  PubMed  Google Scholar 

  25. Adrogue H, Madias N. Hyponatremia. N Engl J Med. 2000;342:1581–9.

    Article  CAS  PubMed  Google Scholar 

  26. Goldsmith S, Francis G, Aw Jr C, Levine T, Cohn J. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol. 1983;1:1385–90.

    Article  CAS  PubMed  Google Scholar 

  27. Gs F, Benedict C, Johnstone D, Kirlin P, Nicklas J, Liang C, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation. 1990;82:1724–9.

    Article  Google Scholar 

  28. Greger R, Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 1983;396:325–34.

    Article  CAS  PubMed  Google Scholar 

  29. Mastroianni N, De Fusco M, Zollo M, Arrigo G, Zuffardi O, Bettinelli A, et al. Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (Slc12a3). Genomics. 1996;35:486–93.

    Article  CAS  PubMed  Google Scholar 

  30. Verbrugge F, Dupont M, Steels P, Grieten L, Swennen Q, Tang W, et al. The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’. Eur J Heart Fail. 2014;16:133–42.

    Article  CAS  PubMed  Google Scholar 

  31. Kreimeier U, Bruckner U, Niemczyk S, Messmer K. Hyperosmotic saline dextran for resuscitation from traumatic-hemorrhagic hypotension: effect on regional blood flow. Circ Shock. 1990;32:83–99.

    CAS  PubMed  Google Scholar 

  32. Monteiro Pacheco Jr A, Martins Coimbra R, Kreimeier U, Frey L, Messmer K. Hypertonic volume therapy: feasibility in the prevention and treatment of multiple organ failure and sepsis. Sao Paulo Med J. 1995;113:1053–60.

    PubMed  Google Scholar 

  33. Paterna S, Di Pasquale P, Parrinello G, Amato P, Cardinale A, Follone G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as a bolus, in refractory congestive heart failure. Eur J Heart Fail. 2000;2:305–13.

    Article  CAS  PubMed  Google Scholar 

  34. Licata G, Di Pasquale P, Parrinello G, Cardinale A, Scandurra A, Follone G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145:459–66.

    Article  CAS  PubMed  Google Scholar 

  35. Paterna S, Di Pasquale P, Parrinello G, Fornaciari E, Di Gaudio F, Fasullo S, et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure: a double-blind study. J Am Coll Cardiol. 2005;45:1997–2003.

    Article  CAS  PubMed  Google Scholar 

  36. Licata G, Tuttolomondo A, Licata A, Parrinello G, Di Raimondo D, Di Sciacca R, et al. Clinical trial: high-dose furosemide plus small-volume hypertonic saline solutions vs. repeated paracentesis as treatment of refractory ascites. Aliment Pharmacol Ther. 2009;30:227–35.

    Article  CAS  PubMed  Google Scholar 

  37. Parrinello G, Paterna S, Di Pasquale P, Torres D, Mezzero M, Cardillo M, et al. Changes in estimating echocardiography pulmonary capillary wedge pressure after hypersaline plus furosemide versus furosemide alone in decompensated heart failure. J Card Fail. 2011;17:331–9.

    Article  CAS  PubMed  Google Scholar 

  38. Parrinello G, Di Pasquale P, Torres D, Cardillo M, Schimmenti C, Lupo U, et al. Troponin I release after intravenous treatment with high furosemide doses plus hypertonic saline solution in decompensated heart failure trial (Tra-Hss-Fur). Am Heart J. 2012;164:351–7.

    Article  CAS  PubMed  Google Scholar 

  39. De Vecchis R, Ciccarelli A, Ariano C, Pucciarelli A, Cioppa C, Giasi A, et al. Renoprotective effect of small volumes of hypertonic saline solution in chronic heart failure patients with marked fluid retention: results of a case-control study. Herz. 2011;36:12–7.

    Article  PubMed  Google Scholar 

  40. Issa V, Bacal F, Mangini S, Carneiro R, Azevedo C, Chizzola P, et al. Hypertonic saline solution for renal failure prevention in patients with decompensated heart failure. Arq Bras Cardiol. 2007;89:251–5.

    Article  CAS  PubMed  Google Scholar 

  41. Issa V, Andrade L, Ayub-Ferreira S, Bacal F, De Braganca A, Guimaraes G, et al. Hypertonic saline solution for prevention of renal dysfunction in patients with decompensated heart failure. Int J Cardiol. 2013;167:34–40.

    Article  PubMed  Google Scholar 

  42. De Vecchis R, Esposito C, Ariano C, Cantatrione S. Hypertonic saline plus I.V. Furosemide improve renal safety profile and clinical outcomes in acute decompensated heart failure: a meta-analysis of the literature. Herz. 2015;40:423–35.

    Article  PubMed  Google Scholar 

  43. Crawford H, Mcintosh J. The use of urea as a diuretic in advanced heart failure. Arch Intern Med (Chic). 1925;36(4):530–41.

    Article  CAS  Google Scholar 

  44. Jf S, Ellison E, Carey L. Osmolar diuresis: success and/or failure. A collective review. Surgery. 1966;60:924–37.

    Google Scholar 

  45. Javid M, Settlage P. Effect of urea on cerebrospinal fluid pressure in human subjects; preliminary report. J Am Med Assoc. 1956;160:943–9.

    Article  CAS  PubMed  Google Scholar 

  46. Decaux G, Unger J, Mockel J. Urea therapy for inappropriate antidiuretic hormone secretion from tuberculous meningitis. Jama. 1980;244:589–90.

    Article  CAS  PubMed  Google Scholar 

  47. Decaux G, Brimioulle S, Genette F, Mockel J. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone by urea. Am J Med. 1980;69:99–106.

    Article  CAS  PubMed  Google Scholar 

  48. Decaux G, Genette F. Urea for long-term treatment of syndrome of inappropriate secretion of antidiuretic hormone. Br Med J (Clin Res Ed). 1981;283:1081–3.

    Article  CAS  Google Scholar 

  49. Decaux G, Mols P, Cauchi P, Delwiche F. Use of urea for treatment of water retention in hyponatraemic cirrhosis with ascites resistant to diuretics. Br Med J (Clin Res Ed). 1985;290:1782–3.

    Article  CAS  Google Scholar 

  50. Soupart A, Schroeder B, Decaux G. Treatment of hyponatraemia by urea decreases risks of brain complications in rats. Brain osmolyte contents analysis. Nephrol Dial Transplant. 2007;22:1856–63.

    Article  CAS  PubMed  Google Scholar 

  51. Yatsu T, Tomura Y, Tahara A, Wada K, Kusayama T, Tsukada J, et al. Cardiovascular and renal effects of conivaptan hydrochloride (Ym087), a vasopressin V1a and V2 receptor antagonist, in dogs with pacing-induced congestive heart failure. Eur J Pharmacol. 1999;376:239–46.

    Article  CAS  PubMed  Google Scholar 

  52. Tahara A, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, et al. Effect of Ym087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc Res. 1998;38:198–205.

    Article  CAS  PubMed  Google Scholar 

  53. Udelson J, Smith W, Hendrix G, Painchaud C, Ghazzi M, Thomas I, et al. Acute hemodynamic effects of conivaptan, a dual V(1a) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation. 2001;104:2417–23.

    Article  CAS  PubMed  Google Scholar 

  54. Rw S, Gross P, Gheorghiade M, Berl T, Verbalis J, Czerwiec F, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.

    Article  Google Scholar 

  55. Gheorghiade M, Gottlieb S, Udelson J, Konstam M, Czerwiec F, Ouyang J, et al. Vasopressin V(2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. Am J Cardiol. 2006;97:1064–7.

    Article  CAS  PubMed  Google Scholar 

  56. Gheorghiade M, Konstam M, Jc Jr B, Grinfeld L, Maggioni A, Swedberg K, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the Everest clinical status trials. JAMA. 2007;297:1332–43.

    Article  CAS  PubMed  Google Scholar 

  57. Goldsmith S, Elkayam U, Haught W, Barve A, He W. Efficacy and safety of the vasopressin V1a/V2-receptor antagonist conivaptan in acute decompensated heart failure: a dose-ranging pilot study. J Card Fail. 2008;14:641–7.

    Article  CAS  PubMed  Google Scholar 

  58. Udelson J, Orlandi C, Ouyang J, Krasa H, Zimmer C, Frivold G, et al. Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol. 2008;52:1540–5.

    Article  CAS  PubMed  Google Scholar 

  59. Pang P, Gheorghiade M, Dihu J, Swedberg K, Khan S, Maggioni A, et al. Effects of tolvaptan on physician-assessed symptoms and signs in patients hospitalized with acute heart failure syndromes: analysis from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan (Everest) trials. Am Heart J. 2011;161:1067–72.

    Article  CAS  PubMed  Google Scholar 

  60. Lanfear D, Sabbah Hn Sr G, Greene S, Ambrosy A, Fought A, Kwasny M, et al. Association of arginine vasopressin levels with outcomes and the effect of V2 blockade in patients hospitalized for heart failure with reduced ejection fraction: insights from the Everest trial. Circ Heart Fail. 2013;6:47–52.

    Article  CAS  PubMed  Google Scholar 

  61. Hauptman P, Burnett J, Gheorghiade M, Grinfeld L, Konstam M, Kostic D, et al. Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail. 2013;19:390–7.

    Article  CAS  PubMed  Google Scholar 

  62. Sr G, Gilbertson D, Mackedanz S, Swan S. Renal effects of conivaptan, furosemide, and the combination in patients with chronic heart failure. J Card Fail. 2011;17:982–9.

    Article  Google Scholar 

  63. Udelson J, Bilsker M, Hauptman P, Sequeira R, Thomas I, O’brien T, et al. A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J Card Fail. 2011;17:973–81.

    Article  CAS  PubMed  Google Scholar 

  64. Gheorghiade M, Gattis W, O’connor C, Kf Jr A, Elkayam U, Barbagelata A, et al. Acute and chronic therapeutic impact of a vasopressin antagonist in congestive heart failure I. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291:1963–71.

    Article  CAS  PubMed  Google Scholar 

  65. Lc C-B, Wb S, Boerrigter G, Ouyang J, Zimmer C, Orlandi C, et al. Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol. 2006;290:F273–8.

    Article  Google Scholar 

  66. Felker G, Mentz R, Adams K, Cole R, Egnaczyk G, Patel C, et al. Tolvaptan in patients hospitalized with acute heart failure: rationale and design of the tactics and the secret of CHF trials. Circ Heart Fail. 2015;8:997–1005.

    Article  CAS  PubMed  Google Scholar 

  67. Galla J, Dn B, Dumbauld S, Luke R. Segmental chloride and fluid handling during correction of chloride-depletion alkalosis without volume expansion in the rat. J Clin Invest. 1984;73:96–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Al R, Spritz N, Mead A, Herrmann R, Braveman W, Luckey E. The use of L-lysine monomydrochloride in combination with mercurial diuretics in the treatment of refractory fluid retention. Circulation. 1960;21:332–6.

    Article  Google Scholar 

  69. Peixoto A, Alpern R. Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis. 2013;61:822–7.

    Article  PubMed  Google Scholar 

  70. Yl C. Adrenergic control of bicarbonate absorption in the proximal convoluted tubule of the rat kidney. Pflugers Arch. 1980;388:159–64.

    Article  Google Scholar 

  71. Voyce S, Goldfine H, Gore J. Severe metabolic and respiratory alkalosis associated with the treatment of congestive heart failure. Arch Intern Med. 1987;147:2211–2.

    Article  CAS  PubMed  Google Scholar 

  72. Fj G, Hussain-Khan S, Segal A. An unusual case of metabolic alkalosis: a window into the pathophysiology and diagnosis of this common acid-base disturbance. Am J Kidney Dis. 2010;55:1130–5.

    Article  Google Scholar 

  73. Nassif M, Novak E, Rich M. Association of serum bicarbonate with long-term outcomes in patients hospitalized with heart failure. Int J Cardiol. 2014;177:673–5.

    Article  PubMed  Google Scholar 

  74. Friedberg C, Halpern M, Taymor R. The effect of intravenously administered 6063, the carbonic anhydrase inhibitor, 2-acetylamino-1, 3, 4-thiadiazole-5-sulfonamide, on fluid and electrolytes in normal subjects and patients with congestive heart failure. J Clin Invest. 1952;31:1074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ck F, Taymor R, Minor J, Halpern M. The use of diamox, a carbonic anhydrase inhibitor, as an oral diuretic in patients with congestive heart failure. N Engl J Med. 1953;248:883–9.

    Article  Google Scholar 

  76. Mi K. Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J. 1980;123:883–7.

    Google Scholar 

  77. Knauf H, Mutschler E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol. 1997;29:367–72.

    Article  CAS  PubMed  Google Scholar 

  78. Apostolo A, Agostoni P, Contini M, Antonioli L, Swenson E. Acetazolamide and inhaled carbon dioxide reduce periodic breathing during exercise in patients with chronic heart failure. J Card Fail. 2014;20:278–88.

    Article  CAS  PubMed  Google Scholar 

  79. Verbrugge F, Dupont M, Bertrand P, Nijst P, Penders J, Dens J, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70:265–73.

    PubMed  Google Scholar 

  80. Brown N, Vaughan D. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97:1411–20.

    Article  CAS  PubMed  Google Scholar 

  81. De Denus S, Tardif J, White M, Bourassa M, Racine N, Levesque S, et al. Quantification of the risk and predictors of hyperkalemia in patients with left ventricular dysfunction: a retrospective analysis of the studies of left ventricular dysfunction (SOLVD) trials. Am Heart J. 2006;152:705–12.

    Article  PubMed  Google Scholar 

  82. Tamirisa K, Aaronson K, Koelling T. Spironolactone-induced renal insufficiency and hyperkalemia in patients with heart failure. Am Heart J. 2004;148:971–8.

    Article  CAS  PubMed  Google Scholar 

  83. Reardon Lc And Macpherson D. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998;158:26–32.

    Article  PubMed  Google Scholar 

  84. Juurlink D, Mamdani M, Lee D, Kopp A, Austin P, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351:543–51.

    Article  CAS  PubMed  Google Scholar 

  85. Vl R. Epidemiology of heart failure. Circ Res. 2013;113:646–59.

    Article  Google Scholar 

  86. Muzzarelli S, Maeder M, Toggweiler S, Rickli H, Nietlispach F, Julius B, et al. Frequency and predictors of hyperkalemia in patients >/=60 years of age with heart failure undergoing intense medical therapy. Am J Cardiol. 2012;109:693–8.

    Article  CAS  PubMed  Google Scholar 

  87. As D, Swedberg K, Mcmurray J, Granger C, Yusuf S, Young J, et al. Incidence and predictors of hyperkalemia in patients with heart failure: an analysis of the charm program. J Am Coll Cardiol. 2007;50:1959–66.

    Article  Google Scholar 

  88. Bf P. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351:585–92.

    Article  Google Scholar 

  89. Sterns R, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol. 2010;21:733–5.

    Article  CAS  PubMed  Google Scholar 

  90. Pitt B, Anker S, Bushinsky D, Kitzman D, Zannad F, Huang I, et al. Evaluation of the efficacy and safety of Rly5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the pearl-HF) trial. Eur Heart J. 2011;32:820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mr W, Gl B, Da B, Mr M, Garza D, Stasiv Y, et al. Patiromer in patients with kidney disease and hyperkalemia receiving Raas inhibitors. N Engl J Med. 2015;372:211–21.

    Article  Google Scholar 

  92. Bakris G, Pitt B, Weir M, Freeman M, Mayo M, Garza D, et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the amethyst-DN randomized clinical trial. JAMA. 2015;314:151–61.

    Article  CAS  PubMed  Google Scholar 

  93. Sr A, Singh B, Lavin P, Stavros F, Rasmussen H. A phase 2 study on the treatment of hyperkalemia in patients with chronic kidney disease suggests that the selective potassium trap, Zs-9, is safe and efficient. Kidney Int. 2015;88:404–11.

    Article  Google Scholar 

  94. Kosiborod M, Rasmussen H, Lavin P, Qunibi W, Spinowitz B, Packham D, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the harmonize randomized clinical trial. JAMA. 2014;312:2223–33.

    Article  PubMed  Google Scholar 

  95. Dk P, Hs R, Lavin P, Ma E-S, Sd R, Block G, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med. 2015;372:222–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin L. Grodin.

Ethics declarations

Conflict of Interest

Justin L. Grodin has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grodin, J.L. Pharmacologic Approaches to Electrolyte Abnormalities in Heart Failure. Curr Heart Fail Rep 13, 181–189 (2016). https://doi.org/10.1007/s11897-016-0295-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0295-7

Keywords

Navigation