Skip to main content

Advertisement

Log in

Exhaled Breath Analysis in Heart Failure

  • Biomarkers of Heart Failure (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a clinical condition that presents high morbidity and mortality and is one of the main reasons for hospital admissions all over the world. Although biochemical processes that occur in the body during heart failure are known, this syndrome is still associated to poor prognosis. Exhaled breath analysis has emerged as a promising noninvasive tool in different clinical conditions and, recently, it has been also tested in patients with HF. This review presents the main breath HF biomarkers, which reflect metabolic changes that occur in this complex syndrome. It also discusses the diagnostic and prognostic value of exhaled breath compounds for HF and makes a short description of the main technologies involved in this analysis. Some perspectives on the area are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bocchi EA, Guimarães G, Tarasoutshi F, Spina G, Mangini S, Bacal F. Cardiomyopathy, adult valve disease and heart failure in South America. Heart. 2009;95(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bocchi EA, Cruz F, Guimarães G, et al. Long-term prospective, randomized, controlled study using repetitive education at six-month intervals and monitoring for adherence in heart failure outpatients: the REMADHE trial. Circ Heart Fail. 2008;1(2):115–24.

    Article  PubMed  Google Scholar 

  3. Dieplinger B, Gegenhuber A, Kaar G, Poelz W, Haltmayer M, Mueller T. Prognostic value of established and novel biomarkers in patients with shortness of breath attending and emergency department. Clin Biochem. 2010;43(9):714–9.

    Article  CAS  PubMed  Google Scholar 

  4. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–52.

    Article  PubMed  Google Scholar 

  5. Righettoni M, Tricoli A, Pratsinis SE. Si:WO(3) sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem. 2010;82(9):3581–7.

    Article  CAS  PubMed  Google Scholar 

  6. Horowitz S. The olfactory sense and its clinical applications. Focus Altern Complement Ther. 2014;20(3):130–5.

    Article  Google Scholar 

  7. Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites. 2015;5(1):3–55.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. Variation in volatile organic compounds in the breath of normal. J Chromatogr B Biomed Sci Appl. 1999;729(1–2):75–88.

    Article  CAS  PubMed  Google Scholar 

  9. van den Velde S, Quirynen M, van Hee P, van Steenberghe D. Differences between alveolar air and mouth air. Anal Chem. 2007;79:3425–9.

    Article  PubMed  Google Scholar 

  10. Di Natale C, Paolesse R, Martinelli E, Capuano R. Solid-state gas sensors for breath analysis: a review. Anal Chim Acta. 2014;824:1–7.

    Article  PubMed  Google Scholar 

  11. Wilson a, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kupari M, Lommi J, Ventilä M, Karjalainen U. Breath acetone in congestive heart failure. Am J Cardiol. 1995;76(14):1076–8.

    Article  CAS  PubMed  Google Scholar 

  13. Maisel AS, Krishnaswamy P, Nowak RM, et al. Breathing not properly multinational study investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yokokawa T, Sugano Y, Shimouchi A, Shibata A, Nakayama T, Ohara T, et al. A case of acute decompensated heart failure evaluated by series of exhaled acetone concentrations as noninvasive biomarker of heart failure severity. Int J Cardiol. 2016;204:112–3.

    Article  PubMed  Google Scholar 

  15. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.

    Article  PubMed  Google Scholar 

  16. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    Article  CAS  PubMed  Google Scholar 

  17. Lommi J, Kupari M, Koskinen P, et al. Blood ketone bodies in congestive heart failure. J Am Coll Cardiol. 1996;28(3):665–72.

    Article  CAS  PubMed  Google Scholar 

  18. Musa-Veloso K, Likhodii SS, Rarama E, et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition. 2006;22(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lommi J, Koskinen P, Näveri H, Härkönen M, Kupari M. Heart failure ketosis. J Intern Med. 1997;242(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lommi J, Kupari M, Yki-Järvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. 1998;81(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  21. Lopes-Cardozo M, Mulder I, van Vugt F, et al. Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria. Mol Cell Biochem. 1975;9(3):155–73.

    Article  CAS  PubMed  Google Scholar 

  22. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  PubMed  Google Scholar 

  23. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med. 1993;14(6):643–7.

    Article  CAS  PubMed  Google Scholar 

  24. Samara MA, Tang WHW, Cikach F, Gul Z, Tranchito L, Paschke KM, et al. Single exhaled breath metabolomics analysis identifies unique breathprint in patients with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(13):1463–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McMurray J, McLay J, Chopra M, Bridges A, Belch JJF. Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1990;65(18):1261–2.

    Article  CAS  PubMed  Google Scholar 

  26. McGrath LT, Patrick R, Silke B. Breath isoprene in patients with heart failure. Eur J Heart Fail. 2001;3(4):423–7.

  27. Agostoni P, Bussotti M. Exhaled nitric oxide and exercise performance in heart failure. Arch Physiol Biochem. 2003;111:293–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lovell SL, Stevenson H, Young IS, McDowell G, McEneaney D, Riley MS, et al. Exhaled nitric oxide during incremental and constant workload exercise in chronic cardiac failure. Eur J Clin Invest. 2000;30:181–7.

    Article  CAS  PubMed  Google Scholar 

  29. Schuster A, Thakur A, Wang Z, Borowski AG, Thomas JD, Tang WH. Increased exhaled nitric oxide levels after exercise in patients with chronic systolic heart failure with pulmonar venous hypertension. J Card Fail. 2012;18(10):799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pappas LK, Giannopoulos G, Loukides S, Gavrielatos G, Athanasopoulou E, Alexanian IP, et al. Exhaled breath condensate in acute and chronic heart failure: new insights into the role of lung injury and barrier dysfunction. Am J Resp Crit Care Med. 2014;190(3):342–5.

    Article  PubMed  Google Scholar 

  31. Pappas L, Filippatos G. Pulmonary congestion in acute heart failure: from hemodynamics to lung injury and barrier dysfunction. Rev Esp Cardiol. 2011;64:735–8.

    Article  PubMed  Google Scholar 

  32. Bykova A, Malinovskaya LK, Kuznetsova M, Chomahidze PS, Kopylov PY, Betelin VB, et al. Exhaled breath analysis in diagnostic of heart failure. Eur J Heart Fail. 2015;17:218–9.

    Google Scholar 

  33. Witt K, Fischer C, Reulecke S, Kechagias V, Surber R, Figulla HR, et al. Electronic nose detects heart failure from exhaled breath. Biomed Eng-Biomed Tech. 2013;58:Suppl 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana G. Marcondes-Braga.

Ethics declarations

Conflict of Interest

Fabiana G. Marcondes-Braga, Guilherme Lopes Batista, Fernando Bacal, and Ivano Gutz have an issued patent (US, 8,747,325 B2) with the United States Patent and Trademark Office (USPTO) and a pending patent (PCT/BR2011/000227) with Patent Cooperation Treat (PCT).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcondes-Braga, F.G., Batista, G.L., Bacal, F. et al. Exhaled Breath Analysis in Heart Failure. Curr Heart Fail Rep 13, 166–171 (2016). https://doi.org/10.1007/s11897-016-0294-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0294-8

Keywords

Navigation