Skip to main content

Advertisement

Log in

Metabolic Dysfunction in Heart Failure: Diagnostic, Prognostic, and Pathophysiologic Insights From Metabolomic Profiling

  • Biomarkers of Heart Failure (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Metabolic impairment is an intrinsic component of heart failure (HF) pathophysiology. Although initially conceived as a myocardial defect, metabolic dysfunction is now recognized as a systemic process with complex interplay between the myocardium and peripheral tissues and organs. Specifically, HF-associated metabolic dysfunction includes alterations in substrate utilization, insulin resistance, defects in energy production, and imbalanced anabolic-catabolic signaling leading to cachexia. Each of these metabolic abnormalities is associated with significant morbidity and mortality in patients with HF; however, their detection and therapeutic management remains challenging. Given the difficulty in obtaining human cardiac tissue for research purposes, peripheral blood metabolomic profiling, a well-established approach for characterizing small-molecule metabolite intermediates from canonical biochemical pathways, may be a useful technology for dissecting biomarkers and mechanisms of metabolic impairment in HF. In this review, metabolic abnormalities in HF will be discussed with particular emphasis on the application of metabolomic profiling to detecting, risk stratifying, and identifying novel targets for metabolic therapy in this heterogeneous population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest published recently have been highlighted as: • Of importance •• Of major importance

  1. Baker M. Big biology: the ’omes puzzle. Nature. 2013;28:416–9.

    Article  Google Scholar 

  2. Zhang Y, Dai Y, Wen J, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17(1):79–86. doi:10.1038/nm.2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. doi:10.1016/j.cmet.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moco S, Collino S, Rezzi S, Martin F-PJ. Metabolomics perspectives in pediatric research. Pediatr Res. 2013;73(4 Pt 2):570–6. doi:10.1038/pr.2013.1.

    Article  CAS  PubMed  Google Scholar 

  5. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3(2):207–14. doi:10.1161/CIRCGENETICS.109.852814.

    Article  CAS  PubMed  Google Scholar 

  6. Shah SH, Sun J-L, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. 2012;163(5):844–850.e1. doi:10.1016/j.ahj.2012.02.005.

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharya S, Granger CB, Craig D, et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. 2014;232(1):191–6. doi:10.1016/j.atherosclerosis.2013.10.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012;58(1):139–47. doi:10.1373/clinchem.2011.169573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng M-L, Wang C-H, Shiao M-S, et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol. 2015;65(15):1509–20. doi:10.1016/j.jacc.2015.02.018. One of the largest and most rigorous analyses of metabolomic profiles in heart failure to date.

    Article  CAS  PubMed  Google Scholar 

  10. Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12(11):1091–7. doi:10.1038/nmeth.3584.

    Article  CAS  PubMed  Google Scholar 

  11. Kraus WE, Muoio DM, Stevens R, et al. Metabolomic Quantitative Trait Loci (mQTL) mapping implicates the ubiquitin proteasome system in cardiovascular disease pathogenesis. Lusis AJ, ed. PLoS Genet. 2015;11(11):e1005553. doi:10.1371/journal.pgen.1005553.

  12. Shah SH, Newgard CB. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ Cardiovasc Genet. 2015;8(2):410–9. doi:10.1161/CIRCGENETICS.114.000223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140–51. doi:10.1056/NEJMra063052.

    Article  PubMed  Google Scholar 

  14. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure. J Am Coll Cardiol. 2014;64(13):1388–400. doi:10.1016/j.jacc.2014.04.083. One of the most comprehensive and nuanced reviews of metabolic impairments in heart failure to date.

    Article  PubMed  Google Scholar 

  15. Herrmann G, Decherd GM. The chemical nature of heart failure. Ann Intern Med. 1939;12(8):1233. doi:10.7326/0003-4819-12-8-1233.

    Article  CAS  Google Scholar 

  16. Kitzman DW, Upadhya B, Vasu S. What the dead can teach the living: systemic nature of heart failure with preserved ejection fraction. Circulation. 2015;131(6):522–4. doi:10.1161/CIRCULATIONAHA.114.014420.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96. doi:10.1161/CIRCRESAHA.115.302922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;62(4):263–71. doi:10.1016/j.jacc.2013.02.092.

    Article  PubMed  Google Scholar 

  19. Ardehali H, Sabbah HN, Burke MA, et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail. 2012;14(2):120–9. doi:10.1093/eurjhf/hfr173. Thorough, sophisticated review of metabolic derangements in heart failure, with emphasis on myocardial energetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Sarcopenic obesity and the pathogenesis of exercise intolerance in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2015;12(3):205–14. doi:10.1007/s11897-015-0257-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aguer C, McCoin CS, Knotts TA, et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J. 2015;29(1):336–45. doi:10.1096/fj.14-255901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stanley WC. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129. doi:10.1152/physrev.00006.2004.

    Article  CAS  PubMed  Google Scholar 

  23. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58. doi:10.1152/physrev.00015.2009.

    Article  CAS  PubMed  Google Scholar 

  24. Carley AN, Taegtmeyer H, Lewandowski ED. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res. 2014;114(4):717–29. doi:10.1161/CIRCRESAHA.114.301863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. AlZadjali MA, Godfrey V, Khan F, et al. Insulin resistance is highly prevalent and is associated with reduced exercise tolerance in nondiabetic patients with heart failure. J Am Coll Cardiol. 2009;53(9):747–53. doi:10.1016/j.jacc.2008.08.081.

    Article  CAS  PubMed  Google Scholar 

  26. Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997;30(2):527–32. doi:10.1016/S0735-1097(97)00185-X.

    Article  CAS  PubMed  Google Scholar 

  27. Doehner W, Turhan G, Leyva F, et al. Skeletal muscle weakness is related to insulin resistance in patients with chronic heart failure. ESC Heart Failure. 2015;2(2):85–9. doi:10.1002/ehf2.12035.

    Article  Google Scholar 

  28. Paolillo S, Rengo G, Pellegrino T, et al. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure. Eur Heart J - Cardiovasc Imaging. 2015;(2015):611–661. doi:10.1093/ehjci/jev061.

  29. Doehner W, Rauchhaus M, Ponikowski P, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005;46(6):1019–26. doi:10.1016/j.jacc.2005.02.093.

    Article  CAS  PubMed  Google Scholar 

  30. Greene SJ, Fonarow GC. Insulin resistance in heart failure: widening the divide between reduced and preserved ejection fraction? Eur J Heart Fail. 2015;17(10):991–3. doi:10.1002/ejhf.337.

    Article  PubMed  Google Scholar 

  31. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14. doi:10.1016/j.cmet.2012.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–83. doi:10.2337/dc08-2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tai ES, Tan MLS, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53(4):757–67. doi:10.1007/s00125-009-1637-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tenori L, Hu X, Pantaleo P, et al. Metabolomic fingerprint of heart failure in humans: a nuclear magnetic resonance spectroscopy analysis. Int J Cardiol. 2013;168(4):e113–5. doi:10.1016/j.ijcard.2013.08.042.

    Article  PubMed  Google Scholar 

  35. Wang J, Li Z, Chen J, et al. Metabolomic identification of diagnostic plasma biomarkers in humans with chronic heart failure. Mol BioSyst. 2013;9(11):2618–26. doi:10.1039/c3mb70227h.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Yu B, Alexander D, et al. Associations between metabolomic compounds and incident heart failure among African Americans: the ARIC study. Am J Epidemiol. 2013;178(4):534–42. doi:10.1093/aje/kwt004. To our knowledge, this is the largest association study of metabolite profiles with incident heart failure to date.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alexander D, Lombardi R, Rodriguez G, Mitchell MM, Marian AJ. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur J Clin Invest. 2010;41(5):527–38. doi:10.1111/j.1365-2362.2010.02441.x. One of the largest and most rigorous assessments of metabolomic profiles in patients with nonischemic cardiomyopathy.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dunn WB, Broadhurst DI, Deepak SM, et al. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics. 2007;3(4):413–26. doi:10.1007/s11306-007-0063-5.

    Article  CAS  Google Scholar 

  39. Kang S-M, Park J-C, Shin M-J, et al. 1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clin Biochem. 2011;44(4):293–9. doi:10.1016/j.clinbiochem.2010.11.010. Successfully discriminated patients with heart failure and reduced ejection fraction from healthy controls using metabolomic profiling of urine samples, instead of plasma.

    Article  PubMed  Google Scholar 

  40. Gray MCMW. Pseudouridine in RNA: what, where, how, and why. IUBMB Life. 2000;49(5):341–51. doi:10.1080/152165400410182.

    Article  PubMed  Google Scholar 

  41. Zordoky BN, Sung MM, Ezekowitz J, et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE. 2015;10(5), e0124844. doi:10.1371/journal.pone.0124844. To our knowledge, this is the first and only metabolomic analysis that compares plasma metabolite profiles of patients with heart failure and preserved ejection to those of patients with heart failure and reduced ejection fraction.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Deidda M, Piras C, Dessalvi CC, et al. Metabolomic approach to profile functional and metabolic changes in heart failure. J Transl Med. 2015;13(1):297. doi:10.1186/s12967-015-0661-3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luan H, Chen X, Zhong S, et al. Serum metabolomics reveals lipid metabolism variation between coronary artery disease and congestive heart failure: a pilot study. Biomarkers. 2013;18(4):314–21. doi:10.3109/1354750X.2013.781222.

    Article  CAS  PubMed  Google Scholar 

  44. Samara MA, Tang WHW, Cikach Jr F, et al. Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(13):1463–4. doi:10.1016/j.jacc.2012.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Desmoulin F, Galinier M, Trouillet C, et al. Metabonomics analysis of plasma reveals the lactate to cholesterol ratio as an independent prognostic factor of short-term mortality in acute heart failure. PLoS ONE. 2013;8(4), e60737. doi:10.1371/journal.pone.0060737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du Z, Shen A, Huang Y, et al. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS ONE. 2014;9(2), e88102. doi:10.1371/journal.pone.0088102.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Steffens DC, Jiang W, Krishnan KRR, et al. Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol. 2010;23(2):138–46. doi:10.1177/0891988709358592.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Turer AT, Stevens RD, Bain JR, et al. Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation. 2009;119(13):1736–46. doi:10.1161/CIRCULATIONAHA.108.816116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85(5):1751–9. doi:10.1161/01.CIR.85.5.1751.

    Article  CAS  PubMed  Google Scholar 

  50. McCoin CS, Knotts TA, Ono-Moore KD, Oort PJ, Adams SH. Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and -independent effects. Am J Physiol Endocrinol Metab. 2015;308(11):E990–1000. doi:10.1152/ajpendo.00602.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rutkowsky JM, Knotts TA, Ono-Moore KD, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306(12):E1378–87. doi:10.1152/ajpendo.00656.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126(9):1110–20. doi:10.1161/CIRCULATIONAHA.111.060368.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thompson DK, Sloane R, Bain JR, et al. Daily variation of serum acylcarnitines and amino acids. Metabolomics. 2011;8(4):556–65. doi:10.1007/s11306-011-0345-9.

    Article  Google Scholar 

  54. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2014:CIRCULATIONAHA.114.010637. doi:10.1161/CIRCULATIONAHA.114.010637.

  55. Ahmad T, Pencina MJ, Schulte PJ, et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74. doi:10.1016/j.jacc.2014.07.979.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kelly JP, Mentz RJ, Mebazaa A, et al. Patient selection in heart failure with preserved ejection fraction clinical trials. J Am Coll Cardiol. 2015;65(16):1668–82. doi:10.1016/j.jacc.2015.03.043.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bersin RM, Stacpoole PW. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J. 1997;134(5 Pt 1):841–55.

    Article  CAS  PubMed  Google Scholar 

  58. Beadle RM, Williams LK, Kuehl M, et al. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. J Am Coll Cardiol HF. 2015;3(3):202–11. doi:10.1016/j.jchf.2014.09.009.

    Google Scholar 

  59. Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562–9. doi:10.1161/CIRCULATIONAHA.109.934059.

    Article  CAS  PubMed  Google Scholar 

  60. Grajek S, Michalak M. The effect of trimetazidine added to pharmacological treatment on all-cause mortality in patients with systolic heart failure. Cardiology. 2015;131(1):22–9. doi:10.1159/000375288.

    Article  CAS  PubMed  Google Scholar 

  61. Fragasso G, Palloshi A, Puccetti P, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006;48(5):992–8. doi:10.1016/j.jacc.2006.03.060.

    Article  CAS  PubMed  Google Scholar 

  62. Shah SH, Hauser ER, Bain JR, et al. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol. 2009;5:258. doi:10.1038/msb.2009.11.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. doi:10.1038/nm.2307.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lewis GD, Wei R, Liu E, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest. 2008;118(10):3503–12. doi:10.1172/JCI35111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported in part by NIH grants TL1TR001116, T32HL7101-39, HL095987, as well as a postgraduate award from the Alpha Omega Alpha Honor Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svati H. Shah.

Ethics declarations

Conflict of Interest

Wynn G. Hunter, Jacob P. Kelly, William E. Kraus, Robert W. McGarrah, and Svati H. Shah declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, W.G., Kelly, J.P., McGarrah, R.W. et al. Metabolic Dysfunction in Heart Failure: Diagnostic, Prognostic, and Pathophysiologic Insights From Metabolomic Profiling. Curr Heart Fail Rep 13, 119–131 (2016). https://doi.org/10.1007/s11897-016-0289-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0289-5

Keywords

Navigation