Skip to main content
Log in

MRI Assessment of Diastolic and Systolic Intraventricular Pressure Gradients in Heart Failure

  • Prevention of Heart Failure (M S J Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

A deep phenotypic characterization of heart failure (HF) is important for a better understanding of its pathophysiology. In particular, novel noninvasive techniques for the characterization of functional abnormalities in HF with preserved ejection fraction are currently needed. While echocardiography is widely used to assess ventricular function, standard echocardiographic techniques provide a limited understanding of ventricular filling. The application of fluid dynamics theory, along with assessments of flow velocity fields in multiple dimensions in the ventricle, can be used to assess intraventricular pressure gradients (IVPGs), which in turn may provide valuable insights into ventricular diastolic and systolic function. Advances in imaging techniques now allow for accurate estimations of systolic and diastolic IVPGs, using noninvasive methods that are easily applicable in clinical research. In this review, we describe the basic concepts regarding intraventricular flow measurements and the derivation of IVPGs. We also review existing literature exploring the role of IVPGs in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  2. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Stewart S, Jenkins A, Buchan S, McGuire A, Capewell S, McMurray JJ. The current cost of heart failure to the National Health Service in the UK. Eur J Heart Fail. 2002;4(3):361–71.

    Article  PubMed  Google Scholar 

  4. Stewart S, MacIntyre K, Capewell S, McMurray JJ. Heart failure and the aging population: an increasing burden in the 21st century? Heart. 2003;89(1):49–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dunlay SM, Roger VL. Understanding the epidemic of heart failure: past, present, and future. Curr Heart Fail Rep. 2014;11(4):404–15.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Little WC. Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation. 2005;112(19):2888–90.

    PubMed  Google Scholar 

  7. Ling D, Rankin JS, Edwards 2nd CH, McHale PA, Anderson RW. Regional diastolic mechanics of the left ventricle in the conscious dog. Am J Physiol. 1979;236(2):H323–330.

    CAS  PubMed  Google Scholar 

  8. Courtois M, Kovacs Jr SJ, Ludbrook PA. Transmitral pressure–flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation. 1988;78(3):661–71.

    Article  CAS  PubMed  Google Scholar 

  9. Nikolic SD, Feneley MP, Pajaro OE, Rankin JS, Yellin EL. Origin of regional pressure gradients in the left ventricle during early diastole. Am J Physiol. 1995;268(2 Pt 2):H550–557.

    CAS  PubMed  Google Scholar 

  10. Greenberg NL, Vandervoort PM, Thomas JD. Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am J Physiol. 1996;271(4 Pt 2):H1267–1276. This study describes for the first time the methodology that allows to estimate noninvasively inertial forces in the Bernoulli equation and to reconstruct the instantaneous pressure difference across the mitral valve throughout the diastolic filling period using color Doppler M mode echocardiography.

    CAS  PubMed  Google Scholar 

  11. Greenberg NL, Vandervoort PM, Firstenberg MS, Garcia MJ, Thomas JD. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am J Physiol Heart Circ Physiol. 2001;280(6):H2507–2515.

    CAS  PubMed  Google Scholar 

  12. Thomas JD, Weyman AE. Numerical modeling of ventricular filling. Ann Biomed Eng. 1992;20(1):19–39.

    Article  CAS  PubMed  Google Scholar 

  13. Tsujino H, Shiki E, Hirama M, Iinuma K. Quantitative measurement of volume flow rate (cardiac output) by the multibeam Doppler method. J Am Soc Echocardiogr. 1995;8(5 Pt 1):621–30.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas JD, Popovic ZB. Intraventricular pressure differences: a new window into cardiac function. Circulation. 2005;112(12):1684–6. This editorial review all the basic concepts behind the theoretical background supporting IVPGs calculation using CMM images and applications.

    Article  PubMed  Google Scholar 

  15. Hatle L, Angelsen BA, Tromsdal A. Non-invasive assessment of aortic stenosis by Doppler ultrasound. Br Heart J. 1980;43(3):284–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bermejo J, Antoranz JC, Yotti R, Moreno M, Garcia-Fernandez MA. Spatio–temporal mapping of intracardiac pressure gradients. A solution to Euler’s equation from digital postprocessing of color Doppler M-mode echocardiograms. Ultrasound Med Biol. 2001;27(5):621–30.

    Article  CAS  PubMed  Google Scholar 

  17. Bellhouse BJ. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res. 1972;6(2):199–210.

    Article  CAS  PubMed  Google Scholar 

  18. Clark C. Relation between pressure difference across the aortic valve and left ventricular outflow. Cardiovasc Res. 1978;12(5):276–87.

    Article  CAS  PubMed  Google Scholar 

  19. Currie PJ, Hagler DJ, Seward JB, et al. Instantaneous pressure gradient: a simultaneous Doppler and dual catheter correlative study. J Am Coll Cardiol. 1986;7(4):800–6.

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura RA, Rihal CS, Tajik AJ, Holmes Jr DR. Accurate measurement of the transmitral gradient in patients with mitral stenosis: a simultaneous catheterization and Doppler echocardiographic study. J Am Coll Cardiol. 1994;24(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkins GT, Gillam LD, Kritzer GL, Levine RA, Palacios IF, Weyman AE. Validation of continuous-wave Doppler echocardiographic measurements of mitral and tricuspid prosthetic valve gradients: a simultaneous Doppler-catheter study. Circulation. 1986;74(4):786–95.

    Article  CAS  PubMed  Google Scholar 

  22. Yoganathan AP, Corcoran WH, Harrison EC. Pressure drops across prosthetic aortic heart valves under steady and pulsatile flow—in vitro measurements. J Biomech. 1979;12(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Sjoberg BJ, Ask P, Loyd D, Wranne B. Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. Am J Physiol. 1995;268(1 Pt 2):H476–489.

    CAS  PubMed  Google Scholar 

  24. Thomas JD, Newell JB, Choong CY, Weyman AE. Physical and physiological determinants of transmitral velocity: numerical analysis. Am J Physiol. 1991;260(5 Pt 2):H1718–1731.

    CAS  PubMed  Google Scholar 

  25. Yellin EL, Nikolic S, Frater RW. Left ventricular filling dynamics and diastolic function. Prog Cardiovasc Dis. 1990;32(4):247–71.

    Article  CAS  PubMed  Google Scholar 

  26. Pasipoularides A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J Am Coll Cardiol. 1990;15(4):859–82.

    Article  CAS  PubMed  Google Scholar 

  27. Stewart SF, Nast EP, Arabia FA, Talbot TL, Proschan M, Clark RE. Errors in pressure gradient measurement by continuous wave Doppler ultrasound: type, size and age effects in bioprosthetic aortic valves. J Am Coll Cardiol. 1991;18(3):769–79.

    Article  CAS  PubMed  Google Scholar 

  28. Teirstein PS, Yock PG, Popp RL. The accuracy of Doppler ultrasound measurement of pressure gradients across irregular, dual, and tunnellike obstructions to blood flow. Circulation. 1985;72(3):577–84.

    Article  CAS  PubMed  Google Scholar 

  29. Vandervoort PM, Greenberg NL, Powell KA, Cosgrove DM, Thomas JD. Pressure recovery in bileaflet heart valve prostheses. Localized high velocities and gradients in central and side orifices with implications for Doppler-catheter gradient relation in aortic and mitral position. Circulation. 1995;92(12):3464–72.

    Article  CAS  PubMed  Google Scholar 

  30. Vasko SD, Goldberg SJ, Requarth JA, Allen HD. Factors affecting accuracy of in vitro valvar pressure gradient estimates by Doppler ultrasound. Am J Cardiol. 1984;54(7):893–6.

    Article  CAS  PubMed  Google Scholar 

  31. Clark C. The fluid mechanics of aortic stenosis—I. Theory and steady flow experiments. J Biomech. 1976;9(8):521–8.

    Article  CAS  PubMed  Google Scholar 

  32. Clark C. The fluid mechanics of aortic stenosis—II. Unsteady flow experiments. J Biomech. 1976;9(9):567–73.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas JD, Weyman AE. Fluid dynamics model of mitral valve flow: description with in vitro validation. J Am Coll Cardiol. 1989;13(1):221–33.

    Article  CAS  PubMed  Google Scholar 

  34. Isaaz K. A theoretical model for the noninvasive assessment of the transmitral pressure–flow relation. J Biomech. 1992;25(6):581–90.

    Article  CAS  PubMed  Google Scholar 

  35. Nishimura RA, Abel MD, Hatle LK, et al. Significance of Doppler indices of diastolic filling of the left ventricle: comparison with invasive hemodynamics in a canine model. Am Heart J. 1989;118(6):1248–58.

    Article  CAS  PubMed  Google Scholar 

  36. David D, Lang RM, Neumann A, et al. Comparison of Doppler indexes of left ventricular diastolic function with simultaneous high fidelity left atrial and ventricular pressures in idiopathic dilated cardiomyopathy. Am J Cardiol. 1989;64(18):1173–9.

    Article  CAS  PubMed  Google Scholar 

  37. Courtois M, Barzilai B, Gutierrez F, Ludbrook PA. Characterization of regional diastolic pressure gradients in the right ventricle. Circulation. 1990;82(4):1413–23.

    Article  CAS  PubMed  Google Scholar 

  38. Courtois M, Kovacs SJ, Ludbrook PA. Physiological early diastolic intraventricular pressure gradient is lost during acute myocardial ischemia. Circulation. 1990;81(5):1688–96.

    Article  CAS  PubMed  Google Scholar 

  39. Courtois M, Vered Z, Barzilai B, Ricciotti NA, Perez JE, Ludbrook PA. The transmitral pressure–flow velocity relation. Effect of abrupt preload reduction. Circulation. 1988;78(6):1459–68.

    Article  CAS  PubMed  Google Scholar 

  40. Bird JJ, Murgo JP, Pasipoularides A. Fluid dynamics of aortic stenosis: subvalvular gradients without subvalvular obstruction. Circulation. 1982;66(4):835–40.

    Article  CAS  PubMed  Google Scholar 

  41. Pasipoularides A, Murgo JP, Bird JJ, Craig WE. Fluid dynamics of aortic stenosis: mechanisms for the presence of subvalvular pressure gradients. Am J Physiol. 1984;246(4 Pt 2):H542–550.

    CAS  PubMed  Google Scholar 

  42. Pasipoularides A, Murgo JP, Miller JW, Craig WE. Nonobstructive left ventricular ejection pressure gradients in man. Circ Res. 1987;61(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  43. Firstenberg MS, Vandervoort PM, Greenberg NL, et al. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J Am Coll Cardiol. 2000;36(6):1942–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yotti R, Bermejo J, Desco MM, et al. Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular systolic chamber function. Circulation. 2005;112(12):1771–9.

    Article  PubMed  Google Scholar 

  45. Rovner A, Smith R, Greenberg NL, et al. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am J Physiol Heart Circ Physiol. 2003;285(6):H2492–2499. This article describes how Yotti et al. extended the concepts introduced by Greenberg et al. to visualize the spatio–temporal distribution of diastolic IVPGs as well as to quantify separately their inertial and convective components.

    Article  CAS  PubMed  Google Scholar 

  46. Rovner A, Greenberg NL, Thomas JD, Garcia MJ. Relationship of diastolic intraventricular pressure gradients and aerobic capacity in patients with diastolic heart failure. Am J Physiol Heart Circ Physiol. 2005;289(5):H2081–2088.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson RB, McVeigh ER. Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn Reson Med. 2003;49(6):1056–66.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Isaaz K. Expanding the frontiers of Doppler echocardiography for the noninvasive assessment of diastolic hemodynamics. J Am Coll Cardiol. 2000;36(6):1950–2.

    Article  CAS  PubMed  Google Scholar 

  49. Haugen BO, Berg S, Brecke KM, et al. Blood flow velocity profiles in the aortic annulus: a 3-dimensional freehand color flow Doppler imaging study. J Am Soc Echocardiogr. 2002;15(4):328–33.

    Article  PubMed  Google Scholar 

  50. Thomas N, Taylor P, Padayachee S. The impact of theoretical errors on velocity estimation and accuracy of duplex grading of carotid stenosis. Ultrasound Med Biol. 2002;28(2):191–6. In this study, the authors proposed a flexible reduced-acquisition MRI based approach to calculate IVPGs, which improves acquisition times and requires minimal user input and short processing times to allow fast online display.

    Article  PubMed  Google Scholar 

  51. Weber G, Strauss AL, Rieger H, Scheffler A, Eisenhoffer J. Validation of Doppler measurement of pressure gradients across peripheral model arterial stenosis. J Vasc Surg. 1992;16(1):10–16.

  52. Urchuk SN, Plewes DB. MR measurement of time-dependent blood pressure variations. J Magn Reson Imaging. 1995;5(6):621–7.

    Article  CAS  PubMed  Google Scholar 

  53. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med. 1996;36(4):520–6.

    Article  CAS  PubMed  Google Scholar 

  54. Sondergaard L, Hildebrandt P, Lindvig K, et al. Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping. Am Heart J. 1993;126(5):1156–64.

    Article  CAS  PubMed  Google Scholar 

  55. Sondergaard L, Stahlberg F, Thomsen C, Stensgaard A, Lindvig K, Henriksen O. Accuracy and precision of MR velocity mapping in measurement of stenotic cross-sectional area, flow rate, and pressure gradient. J Magn Reson Imaging. 1993;3(2):433–7.

    Article  CAS  PubMed  Google Scholar 

  56. Sondergaard L, Thomsen C, Stahlberg F, et al. Mitral and aortic valvular flow: quantification with MR phase mapping. J Magn Reson Imaging. 1992;2(3):295–302.

    Article  CAS  PubMed  Google Scholar 

  57. Urchuk SN, Plewes DB. A velocity correlation method for measuring vascular compliance using MR imaging. J Magn Reson Imaging. 1995;5(6):628–34.

    Article  CAS  PubMed  Google Scholar 

  58. Plewes DB, Urchuk SN, Kim S, Soutar I. An MR compatible flow simulator for intravascular pressure simulation. Med Phys. 1995;22(7):1111–5.

    Article  CAS  PubMed  Google Scholar 

  59. Urchuk SN, Plewes DB. MR measurements of pulsatile pressure gradients. J Magn Reson Imaging. 1994;4(6):829–36.

    Article  CAS  PubMed  Google Scholar 

  60. Ebbers T, Wigstrom L, Bolger AF, Engvall J, Karlsson M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn Reson Med. 2001;45(5):872–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tasu JP, Jolivet O, Bittoun J. From flow to pressure: estimation of pressure gradient and derivative by MR acceleration mapping. Magma. 2000;11(1–2):55–7.

    Article  CAS  PubMed  Google Scholar 

  62. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging. 2000;12(2):321–9.

    Article  CAS  PubMed  Google Scholar 

  63. Tasu JP, Mousseaux E, Delouche A, Oddou C, Jolivet O, Bittoun J. Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements. Magn Reson Med. 2000;44(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  64. Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996;36(5):800–3.

    Article  CAS  PubMed  Google Scholar 

  65. Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15(10):2172–84. This study proposed a method for generating relative pressure maps from magnetic resonance velocity data in three spatial and one temporal dimension (4D).

    Article  PubMed  Google Scholar 

  66. Gatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12(1):5.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9(4):681–5.

    Article  PubMed  Google Scholar 

  68. Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment—freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Stewart KC, Kumar R, Charonko JJ, Ohara T, Vlachos PP, Little WC. Evaluation of LV diastolic function from color M-mode echocardiography. JACC Cardiovasc Imaging. 2011;4(1):37–46.

    Article  PubMed  Google Scholar 

  70. Vlachos PP, Niebel CL, Chakraborty S, Pu M, Little WC. Calculating intraventricular pressure difference using a multi-beat spatiotemporal reconstruction of color M-mode echocardiography. Ann Biomed Eng. 2014;42(12):2466–79.

    Article  PubMed  Google Scholar 

  71. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.

    Article  PubMed  Google Scholar 

  72. Brun P, Tribouilloy C, Duval AM, et al. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol. 1992;20(2):420–32.

    Article  CAS  PubMed  Google Scholar 

  73. Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol. 1997;29(2):448–54.

    Article  CAS  PubMed  Google Scholar 

  74. Thomas JD, Popovic ZB. Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol. 2006;48(10):2012–25.

    Article  PubMed  Google Scholar 

  75. Gillebert TC, De Buyzere ML. HFpEF, diastolic suction, and exercise. JACC Cardiovasc Imaging. 2012;5(9):871–3.

    Article  PubMed  Google Scholar 

  76. Opdahl A, Remme EW, Helle-Valle T, et al. Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation. 2009;119(19):2578–86.

    Article  PubMed  Google Scholar 

  77. Falsetti HL, Verani MS, Chen CJ, Cramer JA. Regional pressure differences in the left ventricle. Cathet Cardiovasc Diagn. 1980;6(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  78. Steine K, Stugaard M, Smiseth OA. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation. 1999;99(15):2048–54.

    Article  CAS  PubMed  Google Scholar 

  79. Steine K, Stugaard M, Smiseth O. Mechanisms of diastolic intraventricular regional pressure differences and flow in the inflow and outflow tracts. J Am Coll Cardiol. 2002;40(5):983–90.

    Article  PubMed  Google Scholar 

  80. Firstenberg MS, Greenberg NL, Garcia MJ, Thomas JD. Relationship between ventricular contractility and early diastolic intraventricular pressure gradients: a diastolic link to systolic function. J Am Soc Echocardiogr. 2008;21(5):501–6.

    Article  PubMed  Google Scholar 

  81. Firstenberg MS, Smedira NG, Greenberg NL, et al. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function. Circulation. 2001;104(12 Suppl 1):I330–335.

    CAS  PubMed  Google Scholar 

  82. Chirinos JA, Segers P, Rietzschel ER, et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension. 2013;61(2):296–303.

    Article  CAS  PubMed  Google Scholar 

  83. Yotti R, Bermejo J, Benito Y, et al. Noninvasive estimation of the rate of relaxation by the analysis of intraventricular pressure gradients. Circ Cardiovasc Imaging. 2011;4(2):94–104.

    Article  PubMed  Google Scholar 

  84. Smiseth OA, Steine K, Sandbaek G, Stugaard M, Gjolberg T. Mechanics of intraventricular filling: study of LV early diastolic pressure gradients and flow velocities. Am J Physiol. 1998;275(3 Pt 2):H1062–1069.

    CAS  PubMed  Google Scholar 

  85. Yoshida T, Ohte N, Narita H, et al. Lack of inertia force of late systolic aortic flow is a cause of left ventricular isolated diastolic dysfunction in patients with coronary artery disease. J Am Coll Cardiol. 2006;48(5):983–91.

    Article  PubMed  Google Scholar 

  86. Zamani P, Bluemke DA, Jacobs Jr DR, et al. Resistive and pulsatile arterial load as predictors of left ventricular mass and geometry: the multi-ethnic study of atherosclerosis. Hypertension. 2015;65(1):85–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Weber T, Wassertheurer S, O’Rourke MF, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61(18):1874–83.

    Article  PubMed  Google Scholar 

  88. Weber T, O’Rourke MF, Ammer M, Kvas E, Punzengruber C, Eber B. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens. 2008;21(11):1194–202.

    Article  PubMed  Google Scholar 

  89. Sung SH, Yu WC, Cheng HM, et al. Excessive wave reflections on admission predict post-discharge events in patients hospitalized due to acute heart failure. Eur J Heart Fail. 2012;14(12):1348–55.

    Article  PubMed  Google Scholar 

  90. Kobayashi S, Yano M, Kohno M, et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94(12):3362–8.

    Article  CAS  PubMed  Google Scholar 

  91. Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O’Rourke MF. Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens. 2008;26(5):1017–24.

    Article  CAS  PubMed  Google Scholar 

  92. Gillebert TC, Lew WY. Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol. 1991;261(3 Pt 2):H805–813.

    CAS  PubMed  Google Scholar 

  93. Chirinos JA, Segers P, Duprez DA, et al. Late systolic central hypertension as a predictor of incident heart failure: the Multi-ethnic Study of Atherosclerosis. J Am Heart Assoc. 2015;4(3), e001335.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Chirinos JA, Kips JG, Jacobs Jr DR, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60(21):2170–7.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Guerra M, Bras-Silva C, Amorim MJ, Moura C, Bastos P, Leite-Moreira AF. Intraventricular pressure gradients in heart failure. Physiol Res. 2013;62(5):479–87.

    CAS  PubMed  Google Scholar 

  96. Rovner A, Greenberg NL, Thomas JD, Garcia MJ. Relationship of diastolic intraventricular pressure gradients and aerobic capacity in patients with diastolic heart failure. Am J Physiol Heart Circ Physiol. 2005;289(5):H2081–2088.

    Article  CAS  PubMed  Google Scholar 

  97. Yotti R, Bermejo J, Antoranz JC, et al. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation. 2005;112(19):2921–9.

    PubMed  Google Scholar 

  98. Ohara T, Niebel CL, Stewart KC, et al. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: evaluation by color M-mode echocardiography. JACC Cardiovasc Imaging. 2012;5(9):861–70.

    Article  PubMed  Google Scholar 

  99. Gillebert TC, De Buyzere ML. HFpEF, diastolic suction, and exercise. JACC Cardiovasc Imaging. 2012;5(9):871–3.

    Article  PubMed  Google Scholar 

  100. Stewart KC, Kumar R, Charonko JJ, Ohara T, Vlachos PP, Little WC. Evaluation of LV diastolic function from color M-mode echocardiography. JACC Cardiovasc Imaging. 2011;4(1):37–46.

    Article  PubMed  Google Scholar 

  101. Thomas JD. Flow propagation analysis computer or eyeball? JACC Cardiovasc Imaging. 2011;4(1):47–9.

    Article  PubMed  Google Scholar 

  102. Iwano H, Kamimura D, Fox E, Hall M, Vlachos P, Little WC. Altered spatial distribution of the diastolic left ventricular pressure difference in heart failure. J Am Soc Echocardiogr. 2015;28(5):597–605. e591.

    Article  PubMed  Google Scholar 

  103. Londoño FJ, Segers P, Shiva Kumar P, et al. Abstract 20360: MRI assessment of diastolic and systolic intraventricular pressure gradients in heart failure. Circulation. 2014;130 Suppl 2, A20360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Chirinos.

Ethics declarations

Conflict of Interest

Snigdha Jain, Francisco J. Londono, Patrick Segers, Thierry C. Gillebert, and Marc De Buyzere declare that they have no conflict of interest.

Julio A. Chirinos reports personal fees from Brystol Myers Squibb, OPKO Healthcare, Fukuda Denshi, Microsoft and Merck, grants from National Institutes of Health, American College of Radiology Network, Fukuda Denshi, Microsoft, Brystol Myers Squibb, non-financial support from Atcor Medical, outside the submitted work; In addition, Dr. Chirinos is named as inventor in a pending University of Pennsylvania patent application for the use of inorganic nitrates/nitrites for the treatment of HFpEF.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Londono, F.J., Segers, P. et al. MRI Assessment of Diastolic and Systolic Intraventricular Pressure Gradients in Heart Failure. Curr Heart Fail Rep 13, 37–46 (2016). https://doi.org/10.1007/s11897-016-0281-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0281-0

Keywords

Navigation