Skip to main content

Advertisement

Log in

Challenges in the Management of Patients with Chronic Obstructive Pulmonary Disease and Heart Failure With Reduced Ejection Fraction

  • Management of Heart Failure (T Meyer, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) and heart failure with reduced ejection fraction (HFrEF) commonly coexist in clinical practice. The prevalence of COPD among HFrEF patients ranges from 20 to 32 %. On the other hand; HFrEF is prevalent in more than 20 % of COPD patients. With an aging population, the number of patients with coexisting COPD and HFrEF is on rise. Coexisting COPD and HFrEF presents a unique diagnostic and therapeutic clinical conundrum. Common symptoms shared by both conditions mask the early referral and detection of the other. Beta blockers (BB), angiotensin-converting enzyme inhibitors, and aldosterone antagonists have been shown to reduce hospitalizations, morbidity, and mortality in HFrEF while long-acting inhaled bronchodilators (beta-2-agonists and anticholinergics) and corticosteroids have been endorsed for COPD treatment. The opposing pharmacotherapy of BBs and beta-2-agonists highlight the conflict in prescribing BBs in COPD and beta-2-agonists in HFrEF. This has resulted in underutilization of evidence-based therapy for HFrEF in COPD patients owing to fear of adverse effects. This review aims to provide an update and current perspective on diagnostic and therapeutic management of patients with coexisting COPD and HFrEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Miguel Díez J, Morgan JC, García RJ. The association between COPD and heart failure risk: a review. Int J Chron Obstruct Pulmon Dis. 2013;8:305.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Macchia A et al. Unrecognised ventricular dysfunction in COPD. Eur Respir J. 2012;39(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkins NM et al. Primary care burden and treatment of patients with heart failure and chronic obstructive pulmonary disease in Scotland. Eur J Heart Fail. 2010;12(1):17–24.

    Article  PubMed  Google Scholar 

  4. Kwon BJ et al. Prognosis of heart failure patients with reduced and preserved ejection fraction and coexistent chronic obstructive pulmonary disease. Eur J Heart Fail. 2010;12(12):1339–44.

    Article  PubMed  Google Scholar 

  5. Agarwal SK et al. Airflow obstruction, lung function, and risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) study. Eur J Heart Fail. 2012;14(4):414–22.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Marin JM et al. Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am J Respir Crit Care Med. 2010;182(3):325–31.

    Article  PubMed  Google Scholar 

  7. Gosker HR et al. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. CHEST J. 2003;123(5):1416–24.

    Article  Google Scholar 

  8. Rutten FH et al. Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J. 2005;26(18):1887–94.

    Article  PubMed  Google Scholar 

  9. Schunemann HJ et al. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. CHEST J. 2000;118(3):656–64.

    Article  CAS  Google Scholar 

  10. Sin DD, Man SP. Chronic obstructive pulmonary disease: a novel risk factor for cardiovascular disease. Can J Physiol Pharmacol. 2005;83(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  11. McGarvey LP et al. Ascertainment of cause-specific mortality in COPD: operations of the TORCH Clinical Endpoint Committee. Thorax. 2007;62(5):411–5.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Le Jemtel TH, Padeletti M, Jelic S. Diagnostic and therapeutic challenges in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure. J Am Coll Cardiol. 2007;49(2):171–80.

    Article  PubMed  Google Scholar 

  13. Davie A et al. Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction. BMJ. 1996;312(7025):222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chhabra S.K. and M. Gupta Coexistent chronic obstructive pulmonary disease-heart failure: mechanisms; diagnostic and therapeutic dilemmas. 2010.

  15. Hawkins NM et al. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail. 2009;11(2):130–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zeng Q, Jiang S. Update in diagnosis and therapy of coexistent chronic obstructive pulmonary disease and chronic heart failure. J Thorac Dis. 2012;4(3):310.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Dimopoulou I et al. Effects of severity of long-standing congestive heart failure on pulmonary function. Respir Med. 1998;92(12):1321–5.

    Article  CAS  PubMed  Google Scholar 

  18. Sirak TES. Jelic and T.H. Le Jemtel Therapeutic update: non-selective beta-and alpha-adrenergic blockade in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure. J Am Coll Cardiol. 2004;44(3):497–502.

    Article  CAS  PubMed  Google Scholar 

  19. Mascarenhas J et al. Chronic obstructive pulmonary disease in heart failure. Prevalence, therapeutic and prognostic implications. Am Heart J. 2008;155(3):521–5.

    Article  PubMed  Google Scholar 

  20. Güder G et al. The impact of heart failure on the classification of COPD severity. J Card Fail. 2012;18(8):637–44.

    Article  PubMed  Google Scholar 

  21. Matera MG, Martuscelli E, Cazzola M. Pharmacological modulation of β-adrenoceptor function in patients with coexisting chronic obstructive pulmonary disease and chronic heart failure. Pulm Pharmacol Ther. 2010;23(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Rusinaru D et al. Impact of chronic obstructive pulmonary disease on long-term outcome of patients hospitalized for heart failure. Am J Cardiol. 2008;101(3):353–8.

    Article  PubMed  Google Scholar 

  23. O’Kelly N et al. Short-term outcomes in heart failure patients with chronic obstructive pulmonary disease in the community. World J Cardiol. 2012;4(3):66.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kotlyar E et al. Tolerability of carvedilol in patients with heart failure and concomitant chronic obstructive pulmonary disease or asthma. The J Heart Lung Transplant. 2002;21(12):1290–5.

    Article  PubMed  Google Scholar 

  25. Salpeter S et al. Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2003;97(10):1094–101.

    Article  CAS  PubMed  Google Scholar 

  26. Shelton RJ et al. Effect of a community heart failure clinic on uptake of β blockers by patients with obstructive airways disease and heart failure. Heart. 2006;92(3):331–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Salpeter S.S. et al. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2002(2): Cd003566.

  28. Staszewsky L et al. Clinical; neurohormonal; and inflammatory markers and overall prognostic role of chronic obstructive pulmonary disease in patients with heart failure: data from the Val-HeFT heart failure trial. J Card Fail. 2007;13(10):797–804.

    Article  CAS  PubMed  Google Scholar 

  29. van Gestel YR et al. Impact of cardioselective β-blockers on mortality in patients with chronic obstructive pulmonary disease and atherosclerosis. Am J Respir Crit Care Med. 2008;178(7):695–700.

    Article  PubMed  Google Scholar 

  30. Puente-Maestu L et al. Multicentric study on the beta-blocker use and relation with exacerbations in COPD. Respir Med. 2014;108(5):737–44.

    Article  PubMed  Google Scholar 

  31. Sin DD, Man SP. A curious case of β-blockers in chronic obstructive pulmonary disease. Arch Intern Med. 2010;170(10):849–50.

    Article  PubMed  Google Scholar 

  32. Ekström MP, Hermansson AB, Ström KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease: a time-dependent analysis. Am J Respir Crit Care Med. 2013;187(7):715–20.

    Article  PubMed  Google Scholar 

  33. Krum H, Ninio D, MacDonald P. Baseline predictors of tolerability to carvedilol in patients with chronic heart failure. Heart. 2000;84(6):615–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Jabbour A et al. Differences between beta-blockers in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized crossover trial. J Am Coll Cardiol. 2010;55(17):1780–7.

    Article  PubMed  Google Scholar 

  35. Lainscak M et al. Differences between bisoprolol and carvedilol in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized trial. Respir Med. 2011;105:S44–9.

    Article  PubMed  Google Scholar 

  36. Mentz RJ et al. Association of beta-blocker use and selectivity with outcomes in patients with heart failure and chronic obstructive pulmonary disease (from OPTIMIZE-HF). Am J Cardiol. 2013;111(4):582–7.

    Article  CAS  PubMed  Google Scholar 

  37. Maffei A. and G. Lembo, Nitric oxide mechanisms of nebivolol. Therapeutic Advances in Cardiovascular Disease; 2009.

  38. Rutten FH et al. β-blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Arch Intern Med. 2010;170(10):880–7.

    Article  PubMed  Google Scholar 

  39. Etminan M et al. Beta-blocker use and COPD mortality: a systematic review and meta-analysis. BMC Pulmon Med. 2012;12(1):48.

    Article  CAS  Google Scholar 

  40. So PP-S et al. Usefulness of beta-blocker therapy and outcomes in patients with pulmonary arterial hypertension. Am J Cardiol. 2012;109(10):1504–9.

    Article  CAS  PubMed  Google Scholar 

  41. Frances S, Handoko ML. β-blockers in pulmonary arterial hypertension: evolving concepts of right heart failure. Eur Respir J. 2015;46(3):619–21.

    Article  Google Scholar 

  42. Bandyopadhyay D. et al. Outcomes of β-blocker use in pulmonary arterial hypertension: a propensity-matched analysis. European Respiratory Journal. 2015: p. ERJ-02155-2014.

  43. Gottlieb SS, McCarter RJ, Vogel RA. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med. 1998;339(8):489–97.

    Article  CAS  PubMed  Google Scholar 

  44. Chen J et al. Effectiveness of beta-blocker therapy after acute myocardial infarction in elderly patients with chronic obstructive pulmonary disease or asthma. J Am Coll Cardiol. 2001;37(7):1950–6.

    Article  CAS  PubMed  Google Scholar 

  45. McMurray JJ et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

    Article  CAS  PubMed  Google Scholar 

  46. Tavazzi L et al. Clinical profiles and outcomes in patients with chronic heart failure and chronic obstructive pulmonary disease: an efficacy and safety analysis of SHIFT study. Int J Cardiol. 2013;170(2):182–8.

    Article  CAS  PubMed  Google Scholar 

  47. Bartziokas K et al. Statins and outcome after hospitalization for COPD exacerbation: a prospective study. Pulmon Pharmacol Ther. 2011;24(5):625–31.

    Article  CAS  Google Scholar 

  48. Mancini GB et al. Reduction of morbidity and mortality by statins; angiotensin-converting enzyme inhibitors; and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2006;47(12):2554–60.

    Article  CAS  PubMed  Google Scholar 

  49. Mortensen EM et al. Impact of statins and ACE inhibitors on mortality after COPD exacerbations. Respir Res. 2009;10(45):1465–9921.

    Google Scholar 

  50. Mentz RJ et al. The impact of chronic obstructive pulmonary disease in patients hospitalized for worsening heart failure with reduced ejection fraction: an analysis of the EVEREST Trial. J Card Fail. 2012;18(7):515–23.

    Article  PubMed  Google Scholar 

  51. Coirault C et al. Angiotensin-converting enzyme inhibitor therapy improves respiratory muscle strength in patients with heart failure. CHEST J. 2001;119(6):1755–60.

    Article  CAS  Google Scholar 

  52. Alexeeff SE et al. Statin use reduces decline in lung function: VA Normative Aging Study. Am J Respir Crit Care Med. 2007;176(8):742–7.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Calverley PM, Rennard SI. What have we learned from large drug treatment trials in COPD? Lancet. 2007;370(9589):774–85.

    Article  PubMed  Google Scholar 

  54. Au DH et al. Association between chronic heart failure and inhaled β-2-adrenoceptor agonists. Am Heart J. 2004;148(5):915–20.

    Article  CAS  PubMed  Google Scholar 

  55. Ng TM et al. Chronically inhaled salmeterol improves pulmonary function in heart failure. J Cardiovasc Pharmacol. 2002;40(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hawkins NM et al. Heart failure and chronic obstructive pulmonary disease the quandary of Beta-blockers and Beta-agonists. J Am Coll Cardiol. 2011;57(21):2127–38.

    Article  CAS  PubMed  Google Scholar 

  57. Michele TM, Pinheiro S, Iyasu S. The safety of tiotropium—the FDA’s conclusions. N Engl J Med. 2010;363(12):1097–9.

    Article  CAS  PubMed  Google Scholar 

  58. Gehlbach BK, Geppert E. The pulmonary manifestations of left heart failure. CHEST J. 2004;125(2):669–82.

    Article  Google Scholar 

  59. Minasian AG et al. Bronchodilator responsiveness in patients with chronic heart failure. Heart Lung: J Acute Critical Care. 2013;42(3):208–14.

    Article  Google Scholar 

  60. Ashrafian H, Violaris AG. Beta-blocker therapy of cardiovascular diseases in patients with bronchial asthma or COPD: the pro viewpoint. Prim Care Respir J. 2005;14(5):236–41.

    Article  PubMed  Google Scholar 

  61. Sin DD et al. Effects of fluticasone on systemic markers of inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(7):760–5.

    Article  PubMed  Google Scholar 

  62. Souverein P et al. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case–control study. Heart. 2004;90(8):859–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. White WB et al. Cardiovascular safety in patients receiving roflumilast for the treatment of COPD. CHEST J. 2013;144(3):758–65.

    Article  CAS  Google Scholar 

  64. McCullough PA et al. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B‐type natriuretic peptide in the emergency department. Acad Emerg Med. 2003;10(3):198–204.

    Article  PubMed  Google Scholar 

  65. Fisher K et al. Impact of COPD on the mortality and treatment of patients hospitalized with acute decompensated heart failure. Chest. 2015;147:637–45.

    Article  PubMed  Google Scholar 

  66. COPD G. Global Strategy for the Diagnosis; Management and Prevention Chronic Obstructive Pulmonary Disease. 2013.

  67. Chang CL et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax. 2011;66(9):764–8.

    Article  PubMed  Google Scholar 

  68. Ellis KL et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 2013;15(10):1138–47.

    Article  CAS  PubMed  Google Scholar 

  69. Stefan M.S. et al. Association between β-blocker therapy and outcomes in patients hospitalised with acute exacerbations of chronic obstructive lung disease with underlying ischaemic heart disease; heart failure or hypertension. Thorax; 2012: p. thoraxjnl-2012-201945.

  70. Dransfield MT et al. Use of β blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax. 2008;63(4):301–5.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J et al. Intravenous diuretic and vasodilator therapy reduce plasma brain natriuretic peptide levels in acute exacerbation of chronic obstructive pulmonary disease. Respirology. 2012;17(4):715–20.

    Article  PubMed  Google Scholar 

  72. Singer AJ et al. Bronchodilator therapy in acute decompensated heart failure patients without a history of chronic obstructive pulmonary disease. Ann Emerg Med. 2008;51(1):25–34.

    Article  PubMed  Google Scholar 

  73. Dharmarajan K et al. Acute decompensated heart failure is routinely treated as a cardiopulmonary syndrome. PLoS ONE. 2013;8(10), e78222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Beghé B et al. Exacerbation of respiratory symptoms in COPD patients may not be exacerbations of COPD. Eur Respir J. 2013;41(4):993–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry H. Le Jemtel.

Ethics declarations

Conflict of Interest

Abhishek Jaiswal; Astha Chichra; Vinh Q. Nguyen; Taraka V. Gadiraju; and Thierry H. Le Jemtel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Abhishek Jaiswal and Astha Chichra contributed equally to the manuscript.

This article is part of the Topical Collection on Management of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, A., Chichra, A., Nguyen, V.Q. et al. Challenges in the Management of Patients with Chronic Obstructive Pulmonary Disease and Heart Failure With Reduced Ejection Fraction. Curr Heart Fail Rep 13, 30–36 (2016). https://doi.org/10.1007/s11897-016-0278-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0278-8

Keywords

Navigation