Advertisement

Current Heart Failure Reports

, Volume 12, Issue 4, pp 276–283 | Cite as

Role of Imaging Techniques for Diagnosis, Prognosis and Management of Heart Failure Patients: Cardiac Magnetic Resonance

  • Jorge A. Gonzalez
  • Christopher M. KramerEmail author
Pathophysiology of Myocardial Failure (I Anand and M Patarroyo-Aponte, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pathophysiology of Myocardial Failure

Abstract

Cardiac magnetic resonance (CMR) has evolved into a major tool for the diagnosis and assessment of prognosis of patients suffering from heart failure. Anatomical and structural imaging, functional assessment, T1 and T2 mapping tissue characterization, and late gadolinium enhancement (LGE) have provided clinicians with tools to distinguish between non-ischemic and ischemic cardiomyopathies and to identify the etiology of non-ischemic cardiomyopathies. LGE is a useful tool to predict the likelihood of functional recovery after revascularization in patients with CAD and to guide the left ventricular (LV) lead placement in those who qualify for cardiac resynchronization (CRT) therapy. In addition, the presence of LGE and its extent in myocardial tissue relate to overall cardiovascular outcomes. Emerging roles for cardiac imaging in heart failure with preserved ejection fraction (HFpEF) are being studied, and CMR continues to be among the most promising noninvasive imaging alternatives in the diagnosis of this disease.

Keywords

Cardiac magnetic resonance (CMR) Heart failure (HF) Heart failure with preserved ejection fraction (HFpEF) Heart failure with reduced ejection fraction (HFrEF) Left ventricular dysfunction (LV dysfunction) Cardiomyopathies Infiltrative cardiomyopathies Late gadolinium enhancement (LGE) T1 mapping T2 mapping T2 weighted images T2* imaging 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Jorge A. Gonzalez declares that he has no conflict of interest.

Christopher M. Kramer has received research equipment support from Slemens Healthcare and consultant work for Merck, Myokardia, and St. Jude Medical.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Readmissions Reduction Program from The Centers for Medicare & Medicaid Services. Retrieved from http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html.
  2. 2.
    Patel MR, White RD, Abbara S, Bluemke DA, Herfkens RJ, Picard M, et al. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force. J Am Coll Cardiol. 2013;61:2207–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Marcu CB, Beek AM, Van Rossum AC. Cardiovascular magnetic resonance imaging for the assessment of right heart involvement in cardiac and pulmonary disease. Heart Lung Circ. 2006;15:362–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, et al. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging. 2001;14:362–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.PubMedCrossRefGoogle Scholar
  8. 8.
    Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–23.PubMedCrossRefGoogle Scholar
  9. 9.•
    Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2014;7:250–8. LGE in patients with NICM is associated with increased risk of all-cause mortality, heart failure hospitalization, and SCD.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging. 2013;6:806–22.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.•
    Yi CJ, Wu CO, Tee M, Liu CY, Volpe GJ, Prince MR, et al. The association between cardiovascular risk and cardiovascular magnetic resonance measures of fibrosis: the Multi-Ethnic Study of Atherosclerosis (MESA). J Cardiovasc Magn Reson. 2015;17:15. Patients with greater CVD risks had greater T1 mapping indices by CMR, indicative of greater myocardial fibrosis.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.•
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. Consensus Group document in the use of T1 mapping and ECV in CMR.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011;4:269–78.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.•
    Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62:826–38. Patients with a negative stress CMR study have very low risk of CVD death and MI, therefore highlighting the role of CMR in the prognosis of patients with known or suspected CAD.PubMedCrossRefGoogle Scholar
  17. 17.
    Soriano CJ, Ridocci F, Estornell J, Jimenez J, Martinez V, De Velasco JA. Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J Am Coll Cardiol. 2005;45:743–8.PubMedCrossRefGoogle Scholar
  18. 18.
    McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Larose E, Rodes-Cabau J, Pibarot P, Rinfret S, Proulx G, Nguyen CM, et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;55:2459–69.PubMedCrossRefGoogle Scholar
  20. 20.
    De Waha S, Eitel I, Desch S, Fuernau G, Lurz P, Stiermaier T, et al. Prognosis after ST-elevation myocardial infarction: a study on cardiac magnetic resonance imaging versus clinical routine. Trials. 2014;15:249.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Cheong BY, Muthupillai R, Wilson JM, Sung A, Huber S, Amin S, et al. Prognostic significance of delayed-enhancement magnetic resonance imaging: survival of 857 patients with and without left ventricular dysfunction. Circulation. 2009;120:2069–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart DP, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation. 2004;110:1535–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Bove CM, DiMaria JM, Voros S, Conaway MR, Kramer CM. Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting—initial experience. Radiology. 2006;240:835–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5:494–508.PubMedCrossRefGoogle Scholar
  27. 27.
    Parker KM, Bunting E, Malhotra R, Clarke SA, Mason P, Darby AE, et al. Postprocedure mapping of cardiac resynchronization lead position using standard fluoroscopy systems: implications for the nonresponder with scar. Pacing Clin Electrophysiol. 2014;37:757–67.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.PubMedCrossRefGoogle Scholar
  30. 30.•
    Bilchick KC, Kuruvilla S, Hamirani YS, Ramachandran R, Clarke SA, Parker KM, et al. Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. J Am Coll Cardiol. 2014;63:1657–66. CMR might play a role in decreasing the number of non-CRT responders by evaluating the influence of mechanical, electrical and scar properties of the left ventricle and guiding lead placement.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bello D, Shah DJ, Farah GM, Di Luzio S, Parker M, Johnson MR, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation. 2003;108:1945–53.PubMedCrossRefGoogle Scholar
  32. 32.•
    Poyhonen P, Kivisto S, Holmstrom M, Hanninen H. Quantifying late gadolinium enhancement on CMR provides additional prognostic information in early risk-stratification of nonischemic cardiomyopathy: a cohort study. BMC Cardiovasc Disord. 2014;14:110. LGE extent gives additional prognostic information compared to traditional risk factors in patients with NICM.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wong TC, Piehler KM, Zareba KM, Lin K, Phrampus A, Patel A, et al. Myocardial damage detected by late gadolinium enhancement cardiovascular magnetic resonance is associated with subsequent hospitalization for heart failure. J Am Heart Assoc. 2013;2:e000416.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA Guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Salerno M, Kramer CM. Prognosis in hypertrophic cardiomyopathy with contrast-enhanced cardiac magnetic resonance: the future looks bright. J Am Coll Cardiol. 2010;56:888–90.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.PubMedCrossRefGoogle Scholar
  37. 37.•
    Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95. LGE extent quantification by CMR provides additional information for assessing SCD risk among patients with HCM.PubMedCrossRefGoogle Scholar
  38. 38.
    Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5:370–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Kramer CM, Appelbaum E, Desai MY, Desvigne-Nickens P, DiMarco JP, Friedrich MF, et al. Hypertrophic Cardiomyopathy Registry (HCMR): The rationale and design of an international, observational study of hypertrophic cardiomyopathy. Am Heart J. 2015.in press.Google Scholar
  40. 40.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–87.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.•
    Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6:1048–58. T1 mapping showed excellent and superior diagnostic performance in the detection of acute myocarditis than traditional T2-W CMR.PubMedCrossRefGoogle Scholar
  42. 42.
    Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998;97:1802–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012;59:1604–15.PubMedCrossRefGoogle Scholar
  44. 44.•
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97. Non-contrast T1 mapping has high diagnostic accuracy for detecting cardiac AL amyloidosis and potentially more sensitive for detecting early disease than LGE imaging.PubMedCrossRefGoogle Scholar
  45. 45.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:157–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Doughan AR, Williams BR. Cardiac sarcoidosis. Heart. 2006;92:282–8.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Nagai T, Kohsaka S, Okuda S, Anzai T, Asano K, Fukuda K. Incidence and prognostic significance of myocardial late gadolinium enhancement in patients with sarcoidosis without cardiac manifestation. Chest. 2014;146:1064–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Patel AR, Klein MR, Chandra S, Spencer KT, Decara JM, Lang RM, et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail. 2011;13:1231–7.PubMedCrossRefGoogle Scholar
  49. 49.•
    Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6:501–11. The presence of LGE in patients with systemic sarcoidosis is the best independent predictor of potentially fatal events.PubMedCrossRefGoogle Scholar
  50. 50.
    Kirk P, Roughton M, Porter JB, Walker JM, Tanner MA, Patel J, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120:1961–8.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Romero J, Mejia-Lopez E, Manrique C, Lucariello R. Arrhythmogenic right ventricular cardiomyopathy (ARVC/D): a systematic literature review. Clin Med Insights Cardiol. 2013;7:97–114.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Te Riele AS, Tandri H, Bluemke DA. Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson. 2014;16:50.CrossRefGoogle Scholar
  53. 53.
    Dastidar AG, Frontera A, Palazzuoli A, Bucciarelli-Ducci C. TakoTsubo cardiomyopathy: unravelling the malignant consequences of a benign disease with cardiac magnetic resonance. Heart Fail Rev. 2015;015-9489-4.Google Scholar
  54. 54.
    Rochitte CE, Nacif MS, de Oliveira Junior AC, Siqueira-Batista R, Marchiori E, Uellendahl M, et al. Cardiac magnetic resonance in Chagas’ disease. Artif Organs. 2007;31:259–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S, Lehmkuhl L, et al. Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol. 2012;22:2699–709.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Choudhary P, Hsu CJ, Grieve S, Smillie C, Singarayar S, Semsarian C, et al. Improving the diagnosis of LV non-compaction with cardiac magnetic resonance imaging. Int J Cardiol. 2015;181:430–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Parsai C, O'Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson. 2012;14:54,429X-14-54.Google Scholar
  58. 58.
    Maceira AM, Ripoll C, Cosin-Sales J, Igual B, Gavilan M, Salazar J, et al. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson. 2014;16:26.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Habibi M, Chahal H, Opdahl A, Gjesdal O, Helle-Valle TM, Heckbert SR, et al. Association of CMR-measured LA function with heart failure development: results from the MESA study. JACC Cardiovasc Imaging. 2014;7:570–9.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.•
    Neilan TG, Farhad H, Mayrhofer T, Shah RV, Dodson JA, Abbasi SA, et al. Late gadolinium enhancement among survivors of sudden cardiac arrest. JACC Cardiovasc Imaging. 2015;8:414–23. LGE extent identified patients with markedly increased risk of future adverse events among individuals with aborted sudden cardiac arrest.PubMedCrossRefGoogle Scholar
  61. 61.
    Leong DP, De Pasquale CG, Selvanayagam JB. Heart failure with normal ejection fraction: the complementary roles of echocardiography and CMR imaging. JACC Cardiovasc Imaging. 2010;3:409–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medicine (Division of Cardiology), and the Cardiovascular Imaging CenterUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Department of Radiology and Medical Imaging, and the Cardiovascular Imaging CenterUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations