Skip to main content

Advertisement

Log in

Abnormalities in Cardiopulmonary Exercise Testing Ventilatory Parameters in Heart Failure: Pathophysiology and Clinical Usefulness

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a complex syndrome characterized by myocardial dysfunction, derangement of multiple organ systems and poor outcome. Out of several markers of severity, abnormalities in exercise ventilation (VE) offer relevant insights into the pathophysiology of dyspnea, lung gas exchange, and control of ventilation and are now recognized as meaningful indicators of disease severity and prognosis. Ventilation inefficiency, identified as an increased slope of VE vs carbon dioxide production (VCO2) recognizes as major determinants an increased waste ventilation due to enhanced dead space, early occurrence of lactic acidosis, and an abnormal chemoreflex and/or metaboreflex activity. In some cases of HF, especially associated with advanced hemodynamic and neural deregulation, an exercise oscillatory ventilatory (EOV) pattern may occur. According to an increasing number of studies, EOV identifies the 15–30 % of higher-risk HF patients requiring aggressive treatment and provides an even more robust prediction of outcome compared to VE/VCO2 slope. Overall, a refined prevalence definition and more comprehensive use of these markers in a clinical environment and in future interventional trials seem challenging for the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Weber KT, Janicki JS. Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol. 1985;55(2):22A–31A.

    Article  CAS  PubMed  Google Scholar 

  2. Tumminello G, Lancellotti P, Lempereur M, D'Orio V, Pierard LA. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J. 2007;28(5):569–74.

    Article  PubMed  Google Scholar 

  3. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74.

    Article  PubMed  Google Scholar 

  4. Arena R, Myers J, Guazzi M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev. 2008;13(2):245–69. Interesting review that comprehensively analyzes pathophysiology and prognostic relevance of an impaired ventilatory efficiency during exercise.

    Article  PubMed  Google Scholar 

  5. Guazzi M. Treating exercise oscillatory ventilation in heart failure: the detail that may matter. Eur Respir J. 2012;40(5):1075–7.

    Article  PubMed  Google Scholar 

  6. Chua TP, Clark AL, Amadi AA, Coats AJS. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1996;27(3):650–7.

    Article  CAS  PubMed  Google Scholar 

  7. Robbins M, Francis G, Pashkow FJ, Snader CE, Hoercher K, Young JB, et al. Ventilatory and heart rate responses to exercise - Better predictors of heart failure mortality than peak oxygen consumption. Circulation. 1999;100(24):2411–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance - Marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 2001;103(7):967–72.

    Article  CAS  PubMed  Google Scholar 

  9. Guazzi M, Reina G, Tumminello G, Guazzi MD. Exercise ventilation inefficiency and cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO2 partial pressure. Eur Heart J. 2005;26(5):472–80.

    Article  PubMed  Google Scholar 

  10. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, et al. Development of a ventilatory classification system in patients with heart failure. Circulation. 2007;115(18):2410–7. Landmark study proposing a new objective classification of dyspnea sensation and prognosis in chronic heart failure by stratifying according to different categories of VE/VCO2 slope response.

    Article  PubMed  Google Scholar 

  11. Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol. 2005;46(10):1883–90.

    Article  PubMed  Google Scholar 

  12. Maeder MT, Thompson BR, Htun N, Kaye DM. Hemodynamic determinants of the abnormal cardiopulmonary exercise response in heart failure with preserved left ventricular ejection fraction. J Card Fail. 2012;18(9):702–10.

    Article  PubMed  Google Scholar 

  13. Wasserman K, Zhang YY, Gitt A, Belardinelli R, Koike A, Lubarsky L, et al. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997;96(7):2221–7.

    Article  CAS  PubMed  Google Scholar 

  14. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and Ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.

    Article  PubMed  Google Scholar 

  15. Agostoni P, Corra U, Cattadori G, Veglia F, Battaia E, La Gioia R, et al. Prognostic value of indeterminable anaerobic threshold in heart failure. Circ Heart Fail. 2013;6(5):977–87.

    Article  PubMed  Google Scholar 

  16. Agostoni P, Emdin M, Corra U, Veglia F, Magri D, Tedesco CC, et al. Permanent atrial fibrillation affects exercise capacity in chronic heart failure patients. Eur Heart J. 2008;29(19):2367–72.

    Article  PubMed  Google Scholar 

  17. Guazzi M. Letter by Guazzi regarding article "Sleep and exertional periodic breathing in chronic heart failure: prognostic importance and interdependence". Circulation. 2006;114(3):e53. author reply e4.

    Article  PubMed  Google Scholar 

  18. Ingle L, Goode K, Carroll S, Sloan R, Boyes C, Cleland JG, et al. Prognostic value of the VE/VCO2 slope calculated from different time intervals in patients with suspected heart failure. Int J Cardiol. 2007;118(3):350–5.

    Article  PubMed  Google Scholar 

  19. Arena R, Humphrey R, Peberdy MA. Prognostic ability of VE/VCO2 slope calculations using different exercise test time intervals in subjects with heart failure. Eur J Cardiovasc Prev Rehabil : Off J Eur Soc Cardiol Work Groups Epidemiol Prev Card Rehabil Exerc Physiol. 2003;10(6):463–8.

    Article  Google Scholar 

  20. Myers J, Salleh A, Buchanan N, Smith D, Neutel J, Bowes E, et al. Ventilatory mechanisms of exercise intolerance in chronic heart-failure. Am Heart J. 1992;124(3):710–9.

    Article  CAS  PubMed  Google Scholar 

  21. Reindl I, Wernecke KD, Opitz C, Wensel R, Konig D, Dengler T, et al. Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am Heart J. 1998;136(5):778–85.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis GD, Shah RV, Pappagianopolas PP, Systrom DM, Semigran MJ. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ Heart Fail. 2008;1(4):227–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wada O, Asanoi H, Miyagi K, Ishizaka S, Kameyama T, Seto H, et al. Importance of abnormal lung perfusion in excessive exercise ventilation in chronic heart-failure. Am Heart J. 1993;125(3):790–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wensel R, Georgiadou P, Francis DP, Bayne S, Scott AC, Genth-Zotz S, et al. Differential contribution of dead space ventilation and low arterial pCO(2) to exercise hyperpnea in patients with chronic heart-failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 2004;93(3):318–23.

    Article  PubMed  Google Scholar 

  25. Lewis GD, Murphy RM, Shah RV, Pappagianopoulos PP, Malhotra R, Bloch KD, et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail. 2011;4(3):276–85.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Guazzi M, Cahalin LP, Arena R. Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail. 2013;19(7):461–7.

    Article  PubMed  Google Scholar 

  27. Guazzi M, Reina G, Tumminello G, Guazzi MD. Alveolar-capillary membrane conductance is the best pulmonary function correlate of exercise ventilation efficiency in heart failure patients. Eur J Heart Fail. 2005;7(6):1017–22.

    Article  PubMed  Google Scholar 

  28. Wilson JR, Ferraro N, Weber KT. Respiratory gas analysis during exercise as a noninvasive measure of lactate concentration in chronic congestive heart failure. Am J Cardiol. 1983;51(10):1639–43.

    Article  CAS  PubMed  Google Scholar 

  29. Hachamovitch R, Brown HV, Rubin SA. Respiratory and circulatory analysis of CO2 output during exercise in chronic heart failure. Circulation. 1991;84(2):605–12.

    Article  CAS  PubMed  Google Scholar 

  30. Perego GB, Marenzi GC, Guazzi M, Sganzerla P, Assanelli E, Palermo P, et al. Contribution of PO2, P50, and Hb to changes in arteriovenous O2 content during exercise in heart failure. J Appl Physiol. 1996;80(2):623–31.

    Article  CAS  PubMed  Google Scholar 

  31. Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJS, Piepoli MF. Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation. 2001;104(19):2324–30.

    Article  CAS  PubMed  Google Scholar 

  32. Scott AC, Wensel R, Davos CH, Georgiadou P, Kemp M, Hooper J, et al. Skeletal muscle reflex in heart failure patients - Role of hydrogen. Circulation. 2003;107(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  33. Tomita T, Takaki H, Hara Y, Sakamaki F, Satoh T, Takagi S, et al. Attenuation of hypercapnic carbon dioxide chemosensitivity after postinfarction exercise training: possible contribution to the improvement in exercise hyperventilation. Heart. 2003;89(4):404–10.

    Article  CAS  PubMed  Google Scholar 

  34. Ciarka A, Cuylits N, Vachiery JL, Lamotte M, Degaute JP, Naeije R, et al. Increased peripheral chemoreceptors sensitivity and exercise ventilation in heart transplant recipients. Circulation. 2006;113(2):252–7.

    Article  PubMed  Google Scholar 

  35. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJS. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure - Effects of physical training. Circulation. 1996;93(5):940–52.

    Article  CAS  PubMed  Google Scholar 

  36. Rosen SD, Murphy K, Leff AP, Cunningham V, Wise RJS, Adams L, et al. Is central nervous system processing altered in patients with heart failure? Eur Heart J. 2004;25(11):952–62.

    Article  PubMed  Google Scholar 

  37. O'Donnell CP, Tankersley CG, Polotsky VP, Schwartz AR, Smith PL. Leptin, obesity, and respiratory function. Respir Physiol. 2000;119(2-3):163–70.

    Article  PubMed  Google Scholar 

  38. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds Jr LH, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

    Article  CAS  PubMed  Google Scholar 

  39. Forman DE, Guazzi M, Myers J, Chase P, Bensimhon D, Cahalin LP, et al. Ventilatory power: a novel index that enhances prognostic assessment of patients with heart failure. Circ Heart Fail. 2012;5(5):621–6.

    Article  PubMed  Google Scholar 

  40. Ferreira AM, Tabet JY, Frankenstein L, Metra M, Mendes M, Zugck C, et al. Ventilatory efficiency and the selection of patients for heart transplantation. Circ Heart Fail. 2010;3(3):378–86.

    Article  PubMed  Google Scholar 

  41. Wessler BS, Kramer DG, Kelly JL, Trikalinos TA, Kent DM, Konstam MA, et al. Drug and device effects on peak oxygen consumption, 6-minute walk distance, and natriuretic peptides as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction. Circ Heart Fail. 2011;4(5):578–88.

    Article  CAS  PubMed  Google Scholar 

  42. Guazzi M, Tumminello G, Di Marco F, Fiorentini C, Guazzi MD. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol. 2004;44:2339–48. First demonstration that acute PDE5 inhibition with sildenafil acutely improves gas diffusion and exercise VE/VCO2 slope.

    Article  CAS  PubMed  Google Scholar 

  43. Agostoni P, Guazzi M, Bussotti M, De Vita S, Palermo P. Carvedilol reduces the inappropriate increase of ventilation during exercise in heart failure patients. Chest. 2002;122(6):2062–7.

    Article  CAS  PubMed  Google Scholar 

  44. Guazzi M, Agostoni PG. Monitoring gas exchange during a constant work rate exercise in patients with left ventricular dysfunction treated with carvedilol. Am J Cardiol. 2000;85(5):660.

    Article  CAS  PubMed  Google Scholar 

  45. Butland RJ, Pang JA, Geddes DM. The selectivity of the beta-adrenoceptor for ventilation in man. Br J Clin Pharmacol. 1982;14(5):707–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Clark AL, Cleland JG. Beta-blockers, exercise, and ventilation in chronic heart failure. J Card Fail. 2005;11(5):340–2.

    Article  PubMed  Google Scholar 

  47. Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.

    Article  CAS  PubMed  Google Scholar 

  48. Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  49. Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD. Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol. 2007;50:2136–44.

    Article  CAS  PubMed  Google Scholar 

  50. Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail. 2012;14(11):1303–10.

    Article  CAS  PubMed  Google Scholar 

  51. Jaussaud J, Blanc P, Derval N, Bordachar P, Courregelongue M, Roudaut R, et al. Ventilatory response and peak circulatory power: new functional markers of response after cardiac resynchronization therapy. Arch Cardiovasc Dis. 2010;103(3):184–91.

    Article  PubMed  Google Scholar 

  52. Guazzi M, Reina G, Tumminello G, Guazzi MD. Improvement of alveolar-capillary membrane diffusing capacity with exercise training in chronic heart failure. J Appl Physiol. 2004;97(5):1866–73.

    Google Scholar 

  53. Arzt M, Schulz M, Wensel R, Montalvan S, Blumberg FC, Riegger GAJ, et al. Nocturnal continuous positive airway pressure improves ventilatory efficiency during exercise in patients with chronic heart failure. Chest. 2005;127(3):794–802.

    Article  PubMed  Google Scholar 

  54. Naughton MT, Liu PP, Benard DC, Goldstein RS, Bradley TD. Treatment of congestive-heart-failure and cheyne-stokes respiration during sleep by continuous positive airway pressure. Am J Respir Crit Care Med. 1995;151(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  55. Naughton MT, Benard DC, Liu PP, Rutherford R, Rankin F, Bradley TD. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Respir Crit Care Med. 1995;152(2):473–9.

    Article  CAS  PubMed  Google Scholar 

  56. Belardinelli R, Georgiou D, Purcaro A. Low dose dobutamine echocardiography predicts improvement in functional capacity after exercise training in patients with ischemic cardiomyopathy: prognostic implication. J Am Coll Cardiol. 1998;31(5):1027–34.

    Article  CAS  PubMed  Google Scholar 

  57. Davey P, Meyer T, Coats A, Adamopoulos S, Casadei B, Conway J, et al. Ventilation in chronic heart-failure - effects of physical-trainig. Br Heart J. 1992;68(5):473–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Adamopoulos S, Coats AJS, Brunotte F, Arnolda L, Meyer T, Thompson CH, et al. Physical-training improves skeletal-muscle metabolism in patients with chronic heart-failure. J Am Coll Cardiol. 1993;21(5):1101–6.

    Article  CAS  PubMed  Google Scholar 

  59. Piepoli MF, Ponikowski PP, Volterrani M, Francis D, Coats AJ. Aetiology and pathophysiological implications of oscillatory ventilation at rest and during exercise in chronic heart failure. Do Cheyne and Stokes have an important message for modern-day patients with heart failure? Eur Heart J. 1999;20(13):946–53.

    Article  CAS  PubMed  Google Scholar 

  60. Corra U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P, et al. Sleep and exertional periodic breathing in chronic heart failure - Prognostic importance and interdependence. Circulation. 2006;113(1):44–50.

    Article  PubMed  Google Scholar 

  61. Sun XG, Hansen JE, Beshai JF, Wasserman K. Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol. 2010;55(17):1814–23.

    Article  PubMed  Google Scholar 

  62. Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R. Exercise oscillatory breathing in diastolic heart failure: prevalence and prognostic insights. Eur Heart J. 2008;29(22):2751–9.

    Article  PubMed  Google Scholar 

  63. Guazzi M, Boracchi P, Labate V, Arena R, Reina G. Exercise oscillatory breathing and NT-proBNP levels in stable heart failure provide the strongest prediction of cardiac outcome when combining biomarkers with cardiopulmonary exercise testing. J Card Fail. 2012;18(4):313–20.

    Article  CAS  PubMed  Google Scholar 

  64. Kremser CB, O'Toole MF, Leff AR. Oscillatory hyperventilation in severe congestive heart failure secondary to idiopathic dilated cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol. 1987;59(8):900–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro JP, Knutzen A, Rocco MB, Hartley LH, Colucci WS. Periodic breathing during exercise in severe heart failure. Reversal with milrinone or cardiac transplantation. Chest. 1987;92(3):555–6.

    Article  CAS  PubMed  Google Scholar 

  66. Bendov I, Sietsema KE, Casaburi R, Wasserman K. Evidence that circulatory oscillations accompany ventilatory oscillations during exercise in patients with heart-failure. Am Rev Respir Dis. 1992;145(4):776–81.

    Article  CAS  Google Scholar 

  67. Leite JJ, Mansur AJ, de Freitas HFG, Chizola PR, Bocchi EA, Terra M, et al. Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. J Am Coll Cardiol. 2003;41(12):2175–81.

    Article  PubMed  Google Scholar 

  68. Corra U, Giordano A, Bosimini E, Mezzani A, Piepoli M, Coats AJ, et al. Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest. 2002;121(5):1572–80.

    Article  PubMed  Google Scholar 

  69. Guazzi M, Raimondo R, Vicenzi M, Arena R, Proserpio C, Sarzi Braga S, et al. Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol. 2007;50(4):299–308. Unique study that addresses the potential of CPX-derived variables to predict cardiac sudden death and identification of EOV as the only variable capable to discriminate it.

    Article  PubMed  Google Scholar 

  70. Yajima T, Koike A, Sugimoto K, Miyahara Y, Marumo F, Hiroe M. Mechanism of periodic breathing in patients with cardiovascular disease. Chest. 1994;106(1):142–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ponikowski P, Anker SD, Chua TP, Francis D, Banasiak W, Poole-Wilson PA, et al. Oscillatory breathing patterns during wakefulness in patients with chronic heart failure - Clinical implications and role of augmented peripheral chemosensitivity. Circulation. 1999;100(24):2418–24.

    Article  CAS  PubMed  Google Scholar 

  72. Murphy RM, Shah RV, Malhotra R, Pappagianopoulos PP, Hough SS, Systrom DM, et al. Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation. 2011;124(13):1442–51.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Olson TP, Frantz RP, Snyder EM, O'Malley KA, Beck KC, Johnson BD. Effects of acute changes in pulmonary wedge pressure on periodic breathing at rest in heart failure patients. Am Heart J. 2007;153(1):104. e1-7.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Guazzi M, Arena R, Ascione A, Piepoli M, Guazzi MD. Gruppo Studio Fisiologia dE. Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value. Am Heart J. 2007;153(5):859–67.

    Article  PubMed  Google Scholar 

  75. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA, et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev. 2013;18(1):79–94.

    Google Scholar 

  76. Zurek M, Corra U, Piepoli MF, Binder RK, Saner H, Schmid JP. Exercise training reverses exertional oscillatory ventilation in heart failure patients. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2012;40(5):1238–44. Remarkable demonstration that beneficial effects of aerobic exercise training extend to EOV modulation and reversal.

  77. Guazzi M, Vicenzi M, Arena R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail. 2012;14(1):82–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Marco Guazzi declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Guazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guazzi, M. Abnormalities in Cardiopulmonary Exercise Testing Ventilatory Parameters in Heart Failure: Pathophysiology and Clinical Usefulness. Curr Heart Fail Rep 11, 80–87 (2014). https://doi.org/10.1007/s11897-013-0183-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0183-3

Keywords

Navigation