Skip to main content

Advertisement

Log in

Novel Therapeutic Approaches to Preserve the Right Ventricle

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The right ventricle (RV) is increasingly recognized for its role in heart disease. In fact, RV function is a strong predictor of outcome in patients with cardiovascular disease. Although the focus in heart failure has been on the left ventricle (LV), recently the spotlight has been shifting to include the RV. The RV and LV have different embryological origins and respond differently to stressors and to therapies. Newer therapies targeting the RV have been investigated in an attempt to improve right-ventricular adaptation to cardiovascular diseases. In this review, we summarize the differences between the RV and LV and focus on novel therapies that target the RV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of outstanding importance

  1. Meyer P, Filippatos GS, Ahmed MI, et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010;121(2):252–8.

    Article  PubMed  Google Scholar 

  2. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    Article  PubMed  Google Scholar 

  3. Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn. 2002;223(3):307–20.

    Article  PubMed  Google Scholar 

  4. Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res. 2011;91(2):252–9.

    Article  PubMed  CAS  Google Scholar 

  5. Zaffran S, Kelly RG, Meilhac SM, et al. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;95(3):261–8.

    Article  PubMed  CAS  Google Scholar 

  6. Rich S. Right ventricular adaptation and maladaptation in chronic pulmonary arterial hypertension. Cardiol Clin. 2012;30(2):257–69.

    Article  PubMed  Google Scholar 

  7. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    PubMed  Google Scholar 

  8. Sandoval J, Bauerle O, Palomar A, et al. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44.

    Article  PubMed  CAS  Google Scholar 

  9. van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7.

    Article  PubMed  Google Scholar 

  10. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  PubMed  CAS  Google Scholar 

  11. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29(19):2388–442.

    Article  PubMed  CAS  Google Scholar 

  12. Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):e391–479.

    Article  PubMed  Google Scholar 

  13. Handoko ML, de Man FS, Allaart CP, et al. Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart. Eur Respir Rev. 2010;19(115):72–82.

    Article  PubMed  CAS  Google Scholar 

  14. Packer M. Evolution of the neurohormonal hypothesis to explain the progression of chronic heart failure. Eur Heart J. 1995;16 (Suppl F):4–6.

    Article  PubMed  CAS  Google Scholar 

  15. Schrier RW, Bansal S. Pulmonary hypertension, right ventricular failure, and kidney: different from left ventricular failure? Clin J Am Soc Nephrol. 2008;3(5):1232–7.

    Article  PubMed  Google Scholar 

  16. Nagaya N, Nishikimi T, Uematsu M, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102(8):865–70.

    Article  PubMed  CAS  Google Scholar 

  17. Nootens M, Kaufmann E, Rector T, et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26(7):1581–5.

    Article  PubMed  CAS  Google Scholar 

  18. Morimitsu T, Miyahara Y, Sinboku H, et al. Iodine-123-metaiodobenzylguanidine myocardial imaging in patients with right ventricular pressure overload. J Nucl Med. 1996;37(8):1343–6.

    PubMed  CAS  Google Scholar 

  19. Velez-Roa S, Ciarka A, Najem B, et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110(10):1308–12.

    Article  PubMed  Google Scholar 

  20. Bristow MR, Minobe W, Rasmussen R, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992;89(3):803–15.

    Article  PubMed  CAS  Google Scholar 

  21. Wensel R, Jilek C, Dörr M, et al. Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J. 2009;34(4):895–901.

    Article  PubMed  CAS  Google Scholar 

  22. Anand IS, Chandrashekhar Y, Ferrari R, et al. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation. 1992;86(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  23. Watkins Jr L, Burton JA, Haber E, et al. The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. J Clin Invest. 1976;57(6):1606–17.

    Article  PubMed  CAS  Google Scholar 

  24. Provencher S, Herve P, Jais X, et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology. 2006;130(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  25. • Peacock A, Ross K. Pulmonary hypertension: a contraindication to the use of {beta}-adrenoceptor blocking agents. Thorax. 2010;65(5):454–5. This case report emphasizes the negative inotropic and chronotropic effects of metoprolol in a patient with portopulmonary hypertension.

    Article  PubMed  CAS  Google Scholar 

  26. •• Bogaard HJ, Natarajan R, Mizuno S, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60. This paper shows that adrenergic receptor blockade can reverse right-heart remodeling and improve right-heart function.

    Article  PubMed  CAS  Google Scholar 

  27. •• de Man FS, Handoko ML, van Ballegoij JJM, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5(1):97–105. In this study, treatment with bisoprolol delayed development of right-heart failure and partially preserved right-ventricle function.

    Article  PubMed  Google Scholar 

  28. Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    Article  PubMed  CAS  Google Scholar 

  29. • Bouallal R, Godart F, Francart C, et al. Interest of β-blockers in patients with right ventricular systemic dysfunction. Cardiol Young. 2010;20(6):615–9. This paper shows the benefits of β-blockers use (both New York Heart Association class and quality of life improved) in patients with right-ventricular dysfunction.

    Article  PubMed  Google Scholar 

  30. • So PP-S, Davies RA, Chandy G, et al. Usefulness of beta-blocker therapy and outcomes in patients with pulmonary arterial hypertension. Am J Cardiol. 2012;109(10):1504–9. This study describes the safe use of β-blockers in a select group patients with PAH and cardiac co-morbidities.

    Article  PubMed  CAS  Google Scholar 

  31. Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97(14):1411–20.

    Article  PubMed  CAS  Google Scholar 

  32. Ishikawa K, Hashimoto H, Mitani S, et al. Enalapril improves heart failure induced by monocrotaline without reducing pulmonary hypertension in rats: roles of preserved myocardial creatine kinase and lactate dehydrogenase isoenzymes. Int J Cardiol. 1995;47(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Zhou T, Liu B, et al. Changes of MMP-2,9 and TIMP-1 expressions in rats with pulmonary arterial hypertension after captopril and losartan interventions. Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(2):255–9.

    PubMed  CAS  Google Scholar 

  34. Rouleau JL, Kapuku G, Pelletier S, et al. Cardioprotective effects of ramipril and losartan in right ventricular pressure overload in the rabbit: importance of kinins and influence on angiotensin II type 1 receptor signaling pathway. Circulation. 2001;104(8):939–44.

    Article  PubMed  CAS  Google Scholar 

  35. Spalding M, Ala-Kokko T, Kiviluoma K, et al. The haemodynamic effects of losartan after right ventricle infarct in young pigs. Pharmacol Toxicol. 2001;88(6):325–30.

    Article  PubMed  CAS  Google Scholar 

  36. Okada M, Harada T, Kikuzuki R, et al. Effects of telmisartan on right ventricular remodeling induced by monocrotaline in rats. J Pharmacol Sci. 2009;111(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  37. Okada M, Kikuzuki R, Harada T, et al. Captopril attenuates matrix metalloproteinase-2 and -9 in monocrotaline-induced right ventricular hypertrophy in rats. J Pharmacol Sci. 2008;108(4):487–94.

    Article  PubMed  CAS  Google Scholar 

  38. Umar S, Hessel M, Steendijk P, et al. Activation of signaling molecules and matrix metalloproteinases in right ventricular myocardium of rats with pulmonary hypertension. Pathol Res Pract. 2007;203(12):863–72.

    Article  PubMed  CAS  Google Scholar 

  39. Hagan G, Southwood M, Treacy C, et al. (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: A proof-of-principle study. Pulm Circ. 2011;1(4):448–55.

    Article  PubMed  CAS  Google Scholar 

  40. Kluge R, Barthel H, Pankau H, et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension. J Nucl Med. 2005;46(1):25–31.

    PubMed  CAS  Google Scholar 

  41. Oikawa M, Kagaya Y, Otani H, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45(11):1849–55.

    Article  PubMed  CAS  Google Scholar 

  42. Can MM, Kaymaz C, Tanboga IH, et al. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med. 2011;36(9):743–8.

    Article  PubMed  Google Scholar 

  43. Nagendran J, Gurtu V, Fu DZ, et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg. 2008;136(1):168–78. 78.e1–3.

    Article  PubMed  Google Scholar 

  44. •• Piao L, Fang Y-H, Cadete VJJ, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med. 2010;88(1):47–60. This study shows that pyruvate dehydrogenase kinase-mediated glycolytic shift contributes to reduced RV function and electrical remodeling in RVH and its inhibition improves RV function and prevents RVH.

    Article  PubMed  CAS  Google Scholar 

  45. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.

    Article  PubMed  CAS  Google Scholar 

  46. •• Harrington LS, Moreno L, Reed A, et al. The PPARbeta/delta agonist GW0742 relaxes pulmonary vessels and limits right heart hypertrophy in rats with hypoxia-induced pulmonary hypertension. PLoS One. 2010;5(3):e9526. This is the first study to show clinical benefits of PPARβ/δ agonist in experimental pulmonary hypertension.

    Article  PubMed  Google Scholar 

  47. Bogaard HJ, Mizuno S, Hussaini AAA, et al. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med. 2011;183(10):1402–10.

    Article  PubMed  CAS  Google Scholar 

  48. •• Cavasin MA, Demos-Davies K, Horn TR, et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res. 2012;110(5):739–48. This paper demonstrates how selective class I histone deacetylase inhibition has beneficial effects in pulmonary hypertension through targeting different pathogenic pathways.

    Article  PubMed  CAS  Google Scholar 

  49. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.

    Article  PubMed  CAS  Google Scholar 

  50. Umar S, de Visser YP, Steendijk P, et al. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2009;297(5):H1606–16.

    Article  PubMed  CAS  Google Scholar 

  51. Handoko ML, Lamberts RR, Redout EM, et al. Right ventricular pacing improves right heart function in experimental pulmonary arterial hypertension: a study in the isolated heart. Am J Physiol Heart Circ Physiol. 2009;297(5):H1752–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are supported by NIH grant R01HL115008. The contents of this submission are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Farha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farha, S., Lundgrin, E.L. & Erzurum, S.C. Novel Therapeutic Approaches to Preserve the Right Ventricle. Curr Heart Fail Rep 10, 12–17 (2013). https://doi.org/10.1007/s11897-012-0119-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0119-3

Keywords

Navigation