Skip to main content
Log in

Imaging the Myocardial Microcirculation Post-Myocardial Infarction

  • Prevention of Heart Failure After Myocardial Infarction (M St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The myocardial microcirculation provides the vital pressure control and metabolic homeostasis for normal muscle function. Microvascular dysfunction is implicated in chronic cardiac disease and can signify higher risk, but its effect in acute myocardial infarction (AMI) can be profound. Modern management of AMI is focussed entirely on timely epicardial coronary patency, but as a result can leave microcirculatory devastation in its wake. The ‘no-reflow’ phenomenon occurs in up to 40 % of those successfully reperfused following an ST-elevation AMI (STEMI), and reflects significant microvessel injury that at its most severe involves both microvascular obstruction (MVO) and intramyocardial haemorrhage. Myocardial contrast echocardiography and cardiac magnetic resonance imaging have both led the field in establishing MVO as the prime determinant of adverse left ventricular (LV) remodeling, LV dysfunction, heart failure and increased mortality. These imaging techniques will be essential to support future research endeavours and shift focus to the maintenance of microvascular flow in AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  PubMed  CAS  Google Scholar 

  2. Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation. 1997;95(2):522–8.

    Article  PubMed  CAS  Google Scholar 

  3. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  PubMed  CAS  Google Scholar 

  4. Kloner RA, Ganote CE, Jennings RB. The "no-reflow" phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54(6):1496–508.

    Article  PubMed  CAS  Google Scholar 

  5. Kloner RA. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther. 2011;16(3–4):244–50.

    Article  PubMed  Google Scholar 

  6. Kloner RA, Rude RE, Carlson N, et al. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980;62(5):945–52.

    Article  PubMed  CAS  Google Scholar 

  7. Reffelmann T, Kloner RA. Microvascular reperfusion injury: rapid expansion of anatomic no-reflow during reperfusion in the rabbit. Am J Physiol Heart Circ Physiol. 2002;283(3):H1099–107.

    PubMed  CAS  Google Scholar 

  8. Schwartz BG, Kloner RA. Coronary no-reflow. J Mol Cell Cardiol. 2012;52(4):873–82.

    Article  PubMed  CAS  Google Scholar 

  9. Heusch G, Kleinbongard P, Bose D, et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009;120(18):1822–36.

    Article  PubMed  Google Scholar 

  10. Bahrmann P, Werner GS, Heusch G, et al. Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation. 2007;115(5):600–8.

    Article  PubMed  Google Scholar 

  11. Ozaki Y, Tanaka A, Tanimoto T, et al. Thin-cap fibroatheroma as high-risk plaque for microvascular obstruction in patients with acute coronary syndrome. Circ Cardiovasc Imaging. 2011;4(6):620–7.

    Article  PubMed  Google Scholar 

  12. Limbruno U, De Carlo M, Pistolesi S, et al. Distal embolization during primary angioplasty: histopathologic features and predictability. Am Heart J. 2005;150(1):102–8.

    Article  PubMed  Google Scholar 

  13. Svilaas T, Vlaar PJ, van der Horst IC, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med. 2008;358(6):557–67.

    Article  PubMed  CAS  Google Scholar 

  14. Barbash GI, Roth A, Hod H, et al. Rapid resolution of ST elevation and prediction of clinical outcome in patients undergoing thrombolysis with alteplase (recombinant tissue-type plasminogen activator): results of the Israeli Study of Early Intervention in Myocardial Infarction. Br Heart J. 1990;64(4):241–7.

    Article  PubMed  CAS  Google Scholar 

  15. Zeymer U, Schroder R, Tebbe U, et al. Non-invasive detection of early infarct vessel patency by resolution of ST-segment elevation in patients with thrombolysis for acute myocardial infarction; results of the angiographic substudy of the Hirudin for Improvement of Thrombolysis (HIT)-4 trial. Eur Heart J. 2001;22(9):769–75.

    Article  PubMed  CAS  Google Scholar 

  16. Syed MA, Borzak S, Asfour A, et al. Single lead ST-segment recovery: a simple, reliable measure of successful fibrinolysis after acute myocardial infarction. Am Heart J. 2004;147(2):275–80.

    Article  PubMed  Google Scholar 

  17. Schroder R, Dissmann R, Bruggemann T, et al. Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. J Am Coll Cardiol. 1994;24(2):384–91.

    Article  PubMed  CAS  Google Scholar 

  18. de Lemos JA, Antman EM, Giugliano RP, et al. ST-segment resolution and infarct-related artery patency and flow after thrombolytic therapy. Thrombolysis in Myocardial Infarction (TIMI) 14 investigators. Am J Cardiol. 2000;85(3):299–304.

    Article  PubMed  Google Scholar 

  19. de Lemos JA, Braunwald E. ST segment resolution as a tool for assessing the efficacy of reperfusion therapy. J Am Coll Cardiol. 2001;38(5):1283–94.

    Article  PubMed  Google Scholar 

  20. van't Hof AW, Liem A, de Boer MJ, Zijlstra F. Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Zwolle Myocardial infarction Study Group. Lancet. 1997;350(9078):615–9.

    Article  Google Scholar 

  21. Feldman LJ, Coste P, Furber A, et al. Incomplete resolution of ST-segment elevation is a marker of transient microcirculatory dysfunction after stenting for acute myocardial infarction. Circulation. 2003;107(21):2684–9.

    Article  PubMed  Google Scholar 

  22. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36(4):1202–9.

    Article  PubMed  CAS  Google Scholar 

  23. Brener SJ, Moliterno DJ, Aylward PE, et al. Reperfusion after primary angioplasty for ST-elevation myocardial infarction: predictors of success and relationship to clinical outcomes in the APEX-AMI angiographic study. Eur Heart J. 2008;29(9):1127–35.

    Article  PubMed  Google Scholar 

  24. Henriques JP, Zijlstra F, van't Hof AW, et al. Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation. 2003;107(16):2115–9.

    Article  PubMed  Google Scholar 

  25. Gibson CM, Murphy SA, Rizzo MJ, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation. 1999;99(15):1945–50.

    Article  PubMed  CAS  Google Scholar 

  26. van't Hof AW, Liem A, Suryapranata H, et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation. 1998;97(23):2302–6.

    Article  Google Scholar 

  27. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105(16):1909–13.

    Article  PubMed  Google Scholar 

  28. Ambrosio G, Weisman HF, Mannisi JA, Becker LC. Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation. 1989;80(6):1846–61.

    Article  PubMed  CAS  Google Scholar 

  29. Kaul S. Coronary angiography cannot be used to assess myocardial perfusion in patients undergoing reperfusion for acute myocardial infarction. Heart. 2001;86(5):483–4.

    Article  PubMed  CAS  Google Scholar 

  30. Hayat SA, Senior R. Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? Eur Heart J. 2008;29(3):299–314.

    Article  PubMed  Google Scholar 

  31. Kaul S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation. 2008;118(3):291–308.

    Article  PubMed  Google Scholar 

  32. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85(5):1699–705.

    Article  PubMed  CAS  Google Scholar 

  33. Iwakura K, Ito H, Kawano S, et al. Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol. 2001;38(2):472–7.

    Article  PubMed  CAS  Google Scholar 

  34. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation. 1996;93(2):223–8.

    Article  PubMed  CAS  Google Scholar 

  35. Greaves K, Dixon SR, Fejka M, et al. Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart. 2003;89(2):139–44.

    Article  PubMed  CAS  Google Scholar 

  36. Galiuto L, Garramone B, Scara A, et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J Am Coll Cardiol. 2008;51(5):552–9.

    Article  PubMed  Google Scholar 

  37. Jeetley P, Swinburn J, Hickman M, et al. Myocardial contrast echocardiography predicts left ventricular remodelling after acute myocardial infarction. J Am Soc Echocardiogr. 2004;17(10):1030–6.

    Article  PubMed  Google Scholar 

  38. Bolognese L, Carrabba N, Parodi G, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–6.

    Article  PubMed  Google Scholar 

  39. Dwivedi G, Janardhanan R, Hayat SA, et al. Prognostic value of myocardial viability detected by myocardial contrast echocardiography early after acute myocardial infarction. J Am Coll Cardiol. 2007;50(4):327–34.

    Article  PubMed  Google Scholar 

  40. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation. 1993;88(2):596–604.

    Article  PubMed  CAS  Google Scholar 

  41. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Characterization of spatial patterns of flow within the reperfused myocardium by myocardial contrast echocardiography. Implications in determining extent of myocardial salvage. Circulation. 1993;88(6):2596–606.

    Article  PubMed  CAS  Google Scholar 

  42. • Funaro S, La Torre G, Madonna M et al. Incidence, determinants, and prognostic value of reverse left ventricular remodelling after primary percutaneous coronary intervention: results of the Acute Myocardial Infarction Contrast Imaging (AMICI) multicenter study. Eur Heart J. 2009;30(5):566–75. One in a series of reports from the AMICI study. Improvement in microvessel perfusion (measured by MCE) during the first week after AMI was a strong marker for reverse LV remodeling and favourable long-term outcome.

    Article  PubMed  Google Scholar 

  43. Kaufmann BA, Lindner JR. Molecular imaging with targeted contrast ultrasound. Curr Opin Biotechnol. 2007;18(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  44. Marwick TH, Narula J. Contrast echocardiography: over-achievement in research, under-achievement in practice? JACC Cardiovasc Imaging. 2010;3(2):224–5.

    Article  PubMed  Google Scholar 

  45. White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart. 2012;98(10):773–9.

    Article  PubMed  Google Scholar 

  46. Judd RM, Lugo-Olivieri CH, Arai M, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation. 1995;92(7):1902–10.

    Article  PubMed  CAS  Google Scholar 

  47. Wu KC, Kim RJ, Bluemke DA, et al. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol. 1998;32(6):1756–64.

    Article  PubMed  CAS  Google Scholar 

  48. Manka R, Jahnke C, Kozerke S, et al. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol. 2011;57(4):437–44.

    Article  PubMed  Google Scholar 

  49. Motwani M, Maredia N, Fairbairn TA, et al. High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging. 2012;5(3):306–13.

    Article  PubMed  Google Scholar 

  50. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218(1):215–23.

    PubMed  CAS  Google Scholar 

  51. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  PubMed  CAS  Google Scholar 

  52. Nijveldt R, Hofman MB, Hirsch A, et al. Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology. 2009;250(2):363–70.

    Article  PubMed  Google Scholar 

  53. Yan AT, Gibson CM, Larose E, et al. Characterization of microvascular dysfunction after acute myocardial infarction by cardiovascular magnetic resonance first-pass perfusion and late gadolinium enhancement imaging. J Cardiovasc Magn Reson. 2006;8(6):831–7.

    Article  PubMed  Google Scholar 

  54. Mather AN, Lockie T, Nagel E, et al. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2009;11:33.

    Article  PubMed  Google Scholar 

  55. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–72.

    Article  PubMed  CAS  Google Scholar 

  56. Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26(6):549–57.

    Article  PubMed  Google Scholar 

  57. Nijveldt R, Beek AM, Hirsch A, et al. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol. 2008;52(3):181–9.

    Article  PubMed  Google Scholar 

  58. Orn S, Manhenke C, Greve OJ, et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J. 2009;30(16):1978–85.

    Article  PubMed  Google Scholar 

  59. Weir RAP, Murphy CA, Petrie CJ, et al. Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ Cardiovasc Imaging. 2010;3(4):360–7.

    Article  PubMed  Google Scholar 

  60. Wong DT, Leung MC, Richardson JD et al. Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging. 2012.

  61. Bruder O, Breuckmann F, Jensen C, et al. Prognostic impact of contrast-enhanced CMR early after acute ST segment elevation myocardial infarction (STEMI) in a regional STEMI network: results of the "Herzinfarktverbund Essen". Herz. 2008;33(2):136–42.

    Article  PubMed  Google Scholar 

  62. Cochet AA, Lorgis L, Lalande A, et al. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur Radiol. 2009;19(9):2117–26.

    Article  PubMed  Google Scholar 

  63. •• de Waha S, Desch S, Eitel I et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J. 2010;31(21):2660–8. The largest imaging study of outcome in the presence of MVO, involving 438 patients. The presence of late MVO was shown to be a strong independent predictor for a composite endpoint (death, non-fatal myocardial re-infarction, and congestive heart failure), providing the strongest support that this is the optimal time point for the measurement of MVO by CMR.

    Article  PubMed  Google Scholar 

  64. Wu KC. Functional and clinical impact of microvascular obstruction in acute MI. 2011 SCMR/EuroCMR Joint Scientific Sessions; 2011; Nice, France. http://www.scmr.org/Education/CMR-online-video-on-demand-lectures.html.

  65. Rochitte CE, Lima JA, Bluemke DA, et al. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation. 1998;98(10):1006–14.

    Article  PubMed  CAS  Google Scholar 

  66. Larose E, Rodes-Cabau J, Pibarot P, et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;55(22):2459–69.

    Article  PubMed  Google Scholar 

  67. Bekkers SC, Backes WH, Kim RJ, et al. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol. 2009;19(12):2904–12.

    Article  PubMed  Google Scholar 

  68. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol. 2010;55(16):1649–60.

    Article  PubMed  Google Scholar 

  69. Xu J, Song YB, Hahn JY et al. Comparison of magnetic resonance imaging findings in non-ST-segment elevation versus ST-segment elevation myocardial infarction patients undergoing early invasive intervention. Int J Cardiovasc Imaging. 2011.

  70. Cochet A, Lalande A, Lorgis L, et al. Prognostic value of microvascular damage determined by cardiac magnetic resonance in non ST-segment elevation myocardial infarction: comparison between first-pass and late gadolinium-enhanced images. Invest Radiol. 2010;45(11):725–32.

    Article  PubMed  Google Scholar 

  71. Eitel I, Desch S, de Waha S, et al. Sex differences in myocardial salvage and clinical outcome in patients with acute reperfused ST-elevation myocardial infarction: advances in cardiovascular imaging. Circ Cardiovasc Imaging. 2012;5(1):119–26.

    Article  PubMed  Google Scholar 

  72. de Waha S, Desch S, Eitel I et al. Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol. 2012.

  73. Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the "no reflow" phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985;5(3):593–8.

    Article  PubMed  CAS  Google Scholar 

  74. Jeremy RW, Links JM, Becker LC. Progressive failure of coronary flow during reperfusion of myocardial infarction: documentation of the no reflow phenomenon with positron emission tomography. J Am Coll Cardiol. 1990;16(3):695–704.

    Article  PubMed  CAS  Google Scholar 

  75. Galiuto L, Natale L, Leccisotti L, et al. Non-invasive imaging of microvascular damage. J Nucl Cardiol. 2009;16(5):811–31.

    Article  PubMed  CAS  Google Scholar 

  76. Kondo M, Nakano A, Saito D, Shimono Y. Assessment of "microvascular no-reflow phenomenon" using technetium-99m macroaggregated albumin scintigraphy in patients with acute myocardial infarction. J Am Coll Cardiol. 1998;32(4):898–903.

    Article  PubMed  CAS  Google Scholar 

  77. Hamada S, Nakamura S, Sugiura T, et al. Early detection of the no-reflow phenomenon in reperfused acute myocardial infarction using technetium-99m tetrofosmin imaging. Eur J Nucl Med. 1999;26(3):208–14.

    Article  PubMed  CAS  Google Scholar 

  78. Sahin M, Basoglu T, Canbaz F, et al. The value of the TIMI frame count method in the diagnosis of coronary no-reflow: a comparison with myocardial perfusion SPECT in patients with acute myocardial infarction. Nucl Med Commun. 2002;23(12):1205–10.

    Article  PubMed  CAS  Google Scholar 

  79. Olszowska M, Tracz W, Przewlocki T, et al. The value of myocardial contrast echocardiography compared with SPECT in detecting myocardial perfusion abnormalities in patients with anterior acute myocardial infarction. Kardiol Pol. 2004;60(1):27–38.

    PubMed  Google Scholar 

  80. Umemura S, Nakamura S, Sugiura T, et al. The effect of verapamil on the restoration of myocardial perfusion and functional recovery in patients with angiographic no-reflow after primary percutaneous coronary intervention. Nucl Med Commun. 2006;27(3):247–54.

    Article  PubMed  CAS  Google Scholar 

  81. Bax JJ, Fath-Ordoubadi F, Boersma E, et al. Accuracy of PET in predicting functional recovery after revascularisation in patients with chronic ischaemic dysfunction: head-to-head comparison between blood flow, glucose utilisation and water-perfusable tissue fraction. Eur J Nucl Med. 2002;29(6):721–7.

    Article  CAS  Google Scholar 

  82. Uren NG, Crake T, Lefroy DC, et al. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331(4):222–7.

    Article  PubMed  CAS  Google Scholar 

  83. Y-Rit J, Fishbein MC, Lando U, et al. The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation. 1980;62(6):1274–9.

    Article  PubMed  Google Scholar 

  84. Garcia-Dorado D, Theroux P, Solares J, et al. Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. Am J Pathol. 1990;137(2):301–11.

    PubMed  CAS  Google Scholar 

  85. Ganame J, Messalli G, Dymarkowski S, et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J. 2009;30(12):1440–9.

    Article  PubMed  Google Scholar 

  86. Beek AM, Nijveldt R, van Rossum AC. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2010;26(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  87. •• Eitel I, Kubusch K, Strohm O et al. Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ Cardiovasc Imaging. 2011;4(4):354–62. This large CMR study carefully described the method used to assess potential IMH associated with MVO. A ‘hypointense core’ identified on T2-weighted imaging may indicate the presence of IMH, but may also represent MVO without IMH. A worse outcome in such patients nevertheless affirms the need to better understand the pathophysiology, and imaging, of IMH.

    Article  PubMed  Google Scholar 

  88. Basso C, Corbetti F, Silva C, et al. Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am J Cardiol. 2007;100(8):1322–7.

    Article  PubMed  Google Scholar 

  89. Lotan CS, Bouchard A, Cranney GB, et al. Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5 T. Circulation. 1992;86(3):1018–25.

    Article  PubMed  CAS  Google Scholar 

  90. Cannan C, Eitel I, Hare J, et al. Hemorrhage in the myocardium following infarction. JACC Cardiovasc Imaging. 2010;3(6):665–8.

    Article  PubMed  Google Scholar 

  91. Kumar A, Green JD, Sykes JM, et al. Detection and quantification of myocardial reperfusion hemorrhage using T2*-weighted CMR. JACC Cardiovasc Imaging. 2011;4(12):1274–83.

    Article  PubMed  Google Scholar 

  92. • Mather AN, Fairbairn TA, Ball SG et al. Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodeling and markers of late arrhythmic risk. Heart. 2011;97(6):453–9. This study used both T2 and T2*-weighted CMR imaging techniques to suggest that assessment of IMH by T2* may be more sensitive for the detection of IMH, which may in turn identify a higher risk population for adverse ventricular remodeling.

    Article  PubMed  Google Scholar 

  93. Gerczuk PZ, Kloner RA. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol. 2012;59(11):969–78.

    Article  PubMed  Google Scholar 

  94. Hale SL, Dae MW, Kloner RA. Hypothermia during reperfusion limits 'no-reflow' injury in a rabbit model of acute myocardial infarction. Cardiovasc Res. 2003;59(3):715–22.

    Article  PubMed  CAS  Google Scholar 

  95. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54(4):281–92.

    Article  PubMed  Google Scholar 

  96. Taniyama Y, Ito H, Iwakura K, et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J Am Coll Cardiol. 1997;30(5):1193–9.

    Article  PubMed  CAS  Google Scholar 

  97. Sakuma T, Hayashi Y, Sumii K, et al. Prediction of short- and intermediate-term prognoses of patients with acute myocardial infarction using myocardial contrast echocardiography one day after recanalization. J Am Coll Cardiol. 1998;32(4):890–7.

    Article  PubMed  CAS  Google Scholar 

  98. Ito H, Taniyama Y, Iwakura K, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol. 1999;33(3):654–60.

    Article  PubMed  CAS  Google Scholar 

  99. Iwakura K, Ito H, Kawano S, et al. Chronic pre-treatment of statins is associated with the reduction of the no-reflow phenomenon in the patients with reperfused acute myocardial infarction. Eur Heart J. 2006;27(5):534–9.

    Article  PubMed  CAS  Google Scholar 

  100. Kunichika H, Ben-Yehuda O, Lafitte S, et al. Effects of glycoprotein IIb/IIIa inhibition on microvascular flow after coronary reperfusion. A quantitative myocardial contrast echocardiography study. J Am Coll Cardiol. 2004;43(2):276–83.

    Article  PubMed  CAS  Google Scholar 

  101. Thiele H, Schindler K, Friedenberger J, et al. Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation. 2008;118(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  102. Thuny F, Lairez O, Roubille F, et al. Post-conditioning reduces infarct size and Edema in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59(24):2175–81.

    Article  PubMed  Google Scholar 

  103. Atar D, Petzelbauer P, Schwitter J, et al. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial. J Am Coll Cardiol. 2009;53(8):720–9.

    Article  PubMed  CAS  Google Scholar 

  104. Ludman AJ, Yellon DM, Hasleton J, et al. Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart. 2011;97(19):1560–5.

    Article  PubMed  CAS  Google Scholar 

  105. Payne AR, Berry C, Doolin O et al. Microvascular Resistance Predicts Myocardial Salvage and Infarct Characteristics in ST-Elevation Myocardial Infarction. J Am Heart Assoc. 2012, In press.

Download references

Acknowledgements

S.K. White is supported by a grant from The British Heart Foundation (Clinical Research Training Fellowship: FS/10/72/28568).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, S.K., Hausenloy, D.J. & Moon, J.C. Imaging the Myocardial Microcirculation Post-Myocardial Infarction. Curr Heart Fail Rep 9, 282–292 (2012). https://doi.org/10.1007/s11897-012-0111-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0111-y

Keywords

Navigation