Skip to main content
Log in

Molecular and Cellular Basis for Diastolic Dysfunction

  • Prevention of Heart Failure After Myocardial Infarction (M St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent and is frequently associated with metabolic risk factors. Patients with HFpEF have only a slightly lower mortality than patients with HF and reduced EF. The pathophysiology of HFpEF is currently incompletely understood, which precludes specific therapy. Both HF phenotypes demonstrate distinct cardiac remodeling processes at the macroscopic, microscopic, and ultrastructural levels. Increased diastolic left-ventricular (LV) stiffness and impaired LV relaxation are important features of HFpEF, which can be explained by changes in the extracellular matrix and the cardiomyocytes. In HFpEF, elevated intrinsic cardiomyocyte stiffness contributes to high diastolic LV stiffness. Posttranslational changes in the sarcomeric protein titin, affecting titin isoform expression and phosphorylation, contribute to elevated cardiomyocyte stiffness. Increased nitrosative/oxidative stress, impaired nitric oxide bioavailability, and down-regulation of myocardial cyclic guanosine monophosphate and protein kinase G signaling could trigger posttranslational modifications of titin, thereby augmenting cardiomyocyte and LV diastolic stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  PubMed  CAS  Google Scholar 

  2. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). Eur Heart J 2011, Aug 6, epub ahead of print.

  3. Paulus WJ, van Ballegoij JJ. Treatment of heart failure with normal ejection fraction: an inconvenient truth! J Am Coll Cardiol. 2010;55:526–37.

    Article  PubMed  Google Scholar 

  4. • Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012;59:442–51. This article provides evidence that HFpEF and HFrEF represent distinct heart failure phenotypes as hemodynamic responses to acute vasodilator therapy substantially differ between HFpEF and HFrEF patients.

    Article  PubMed  Google Scholar 

  5. van Heerebeek L, Borbely A, Niessen HWM, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–73.

    Article  PubMed  Google Scholar 

  6. Aurigemma GP, Zile MR, Gaasch WH. Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation. 2006;113:296–304.

    Article  PubMed  Google Scholar 

  7. Yancy CW, Lopatin M, Stevenson LW, et al. For the ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function. A Report from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  8. Fonorow GC, Stough WG, Abraham WT, et al. OPTIMIZE-HF Investigators and Hospitals. Characteristics, treatments and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  Google Scholar 

  9. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.

    Article  PubMed  Google Scholar 

  10. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure – abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  PubMed  CAS  Google Scholar 

  11. Westermann D, Kasner M, Steendijk P, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008;117:2051–60.

    Article  PubMed  Google Scholar 

  12. Borlaug BA, Nishimura RA, Sorajja P, et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    Article  PubMed  Google Scholar 

  13. Paulus WJ. Culprit Mechanism(s) for Exercise Intolerance in Heart Failure With Normal Ejection Fraction. J Am Coll Cardiol. 2010;56:864–6.

    Article  PubMed  Google Scholar 

  14. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis and treatment. Eur Heart J. 2011;32:670–9.

    Article  PubMed  Google Scholar 

  15. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol. 1994;26:279–92.

    Article  PubMed  CAS  Google Scholar 

  16. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    Article  PubMed  CAS  Google Scholar 

  17. Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    Article  PubMed  Google Scholar 

  18. • Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57:977–85. This study demonstrates that extracellular matrix remodelling correlates with diastolic LV dysfunction and reduced exercise capacity in patients with HFpEF.

    Article  PubMed  CAS  Google Scholar 

  19. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  PubMed  CAS  Google Scholar 

  20. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011;4:561–8.

    Article  PubMed  CAS  Google Scholar 

  21. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.

    Article  PubMed  CAS  Google Scholar 

  22. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006;113:2089–96.

    Article  PubMed  CAS  Google Scholar 

  23. Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11:191–7.

    Article  PubMed  CAS  Google Scholar 

  24. Lindsay MM, Maxwell P, Dunn FG. TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension. 2002;40:136–41.

    Article  PubMed  CAS  Google Scholar 

  25. González A, López B, Querejeta R, et al. Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension. 2010;55:1418–24.

    Article  PubMed  Google Scholar 

  26. Spinale FG, Coker ML, Heung LJ, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation. 2000;102:1944–9.

    Article  PubMed  CAS  Google Scholar 

  27. • Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011;4:44–52. This study demonstrates that cardiac inflammation contributes to maladaptive cardiac extracellular matrix remodelling and diastolic LV dysfunction in HFpEF.

    Article  PubMed  Google Scholar 

  28. Collier P, Watson CJ, Voon V, et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13:1087–95.

    Article  PubMed  CAS  Google Scholar 

  29. Kalogeropoulos A, Georgiopoulou V, Psaty BM, et al. Health ABC Study Investigators. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55:2129–37.

    Article  PubMed  CAS  Google Scholar 

  30. Borbely A, van der Velden J, Papp Z, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–81.

    Article  PubMed  Google Scholar 

  31. van Heerebeek L, Hamdani N, Handoko ML, et al. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 2008;117:43–51.

    Article  PubMed  Google Scholar 

  32. •• Borbely A, Falcao-Pires I, van Heerebeek L, et al. Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res. 2009;104:780–6. This study is of major importance as it links increased cardiomyocyte stiffness to posttranslational modifications of the giant elastic sarcomeric protein titin. A specific titin N2B phosphorylation deficit was demonstrated in heart failure patients which was associated with increased cardiomyocyte stiffness.

    Article  PubMed  CAS  Google Scholar 

  33. • Krüger M, Linke WA. Titin-based mechanical signaling in normal and failing myocardium. J Mol Cell Cardiol. 2009;46:490–8. This review article represents a thorough overview of the important role of titin in determination of cardiomyocyte stiffness and biomechanical signaling.

    Article  PubMed  Google Scholar 

  34. Chung CS, Granzier HL. Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J Mol Cell Cardiol. 2011;50:731–9.

    Article  PubMed  CAS  Google Scholar 

  35. Makarenko I, Opitz CA, Leake MC, et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res. 2004;95:708–16.

    Article  PubMed  CAS  Google Scholar 

  36. Nagueh SF, Shah G, Wu Y, et al. Altered titin expression, myocardial stiffness and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004;110:155–62.

    Article  PubMed  CAS  Google Scholar 

  37. Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106:1333–41.

    Article  PubMed  Google Scholar 

  38. Krüger M, Linke WA. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil. 2006;27:435–44.

    Article  PubMed  Google Scholar 

  39. •• Krüger M, Kötter S, Grützner A, et al. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res. 2009;104:87–94. This article was the first to demonstrate specific PKG binding sites within the stiff N2B segment of titin and that PKG-mediated phosphorylation of the stiff N2B segment lowers cardiomyocyte stiffness.

    Article  PubMed  Google Scholar 

  40. Hidalgo C, Hudson B, Bogomolovas J, et al. PKC phosphorylation of titin’s PEVK element. A novel and conserved pathway for modulating myocardial stiffness. Circ Res. 2009;105:631–8.

    Article  PubMed  CAS  Google Scholar 

  41. Grützner A, Garcia-Manyes S, Kötter S, et al. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J. 2009;97:825–34.

    Article  PubMed  Google Scholar 

  42. • Tsai E, Kass DA. Cyclic GMP signalling in cardiovascular pathology and therapeutics. Pharmacol Ther. 2009;122:216–38. This review article provides comprehensive insight into the importance of cGMP-PKG signaling for cardiovascular physiology and pathophysiology.

    Article  PubMed  CAS  Google Scholar 

  43. Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.

    Article  PubMed  CAS  Google Scholar 

  44. •• Bishu K, Hamdani N, Mohammed SF, et al. Sildenafil and BNP acutely phosphorylate titin and improve diastolic distensbility in vivo. Circulation. 2011;124:2882–91. In an old, hypertensive dog model, enhanced signaling through the cGMP-PKG pathway by either stimulating natriuretic peptide-mediated activation of cGMP-PKG signaling as well as by sildenafil-mediated prevention of cGMP breakdown was shown to increase phosphorylation of titin, which improved diastolic LV distensibility.

    Article  PubMed  CAS  Google Scholar 

  45. • Guazzi M, Vicenzi M, Arena R, et al. PDE-5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry and clinical status in patients with stable systolic heart failure: results of a 1-year prospective, randomized, placebo controlled trial. Circ Heart Fail. 2011;4:8–17. This study demonstrates that sildenafil improves diastolic function, cardiac remodelling and clinical status in HFrEF patients.

    Article  PubMed  CAS  Google Scholar 

  46. •• Guazzi M, Vicenzi M, Arena R, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124:164–74. This study is the first to demonstrate improvements of diastolic function in HFpEF patients with pulmonary hypertension following sildenafil treatment.

    Article  PubMed  CAS  Google Scholar 

  47. •• van Heerebeek L, Hamdani N, Falcao-Pires I, et al.: Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 2012, In press. This study demonstrated reduced myocardial cGMP concentration and PKG activity in HFpEF compared to HFrEF and aortic stenosis patients. The lower myocardial cGMP concentration and reduced PKG acitivity in HFpEF were related to lower myocardial NO bioavailability due to increased nitrosative/oxidative stress.

  48. Münzel T, Daiber A, Ullrich V, et al. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol. 2005;25:1551–7.

    Article  PubMed  Google Scholar 

  49. Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741–9.

    Article  PubMed  Google Scholar 

  50. Paulus WJ, Bronzwaer JGF. Nitric oxide’s role in the heart: control of beating or breathing? Am J Physiol Heart Circ Physiol. 2004;287:H8–H13.

    Article  PubMed  CAS  Google Scholar 

  51. Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signaling. Cardiovasc Res. 2007;75:315–26.

    Article  PubMed  CAS  Google Scholar 

  52. • Hammond J, Balligand JL. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol. 2012;52:330–40. This review provides comprehensive insight into the importance of NO and cGMP signaling in cardiomyocytes.

    Article  PubMed  CAS  Google Scholar 

  53. Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994;89:2070–8.

    Article  PubMed  CAS  Google Scholar 

  54. Heymes C, Vanderheyden M, Bronzwaer JG, et al. Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation. 1999;99:3009–16.

    Article  PubMed  CAS  Google Scholar 

  55. Matter CM, Mandinov L, Kaufmann PA, et al. Effect of NO donors on LV diastolic function in patients with severe pressure-overload hypertrophy. Circulation. 1999;99:2396–401.

    Article  PubMed  CAS  Google Scholar 

  56. Takimoto E, Belardi D, Tocchetti CG, et al. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007;115:2159–67.

    Article  PubMed  CAS  Google Scholar 

  57. Tsai EJ, Liu Y, Koitabaschi N, et al. Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylate cyclase in the heart modulates enzyme stimulation. Circ Res. 2012;110:295–303.

    Article  PubMed  CAS  Google Scholar 

  58. Kim HN, Januzzi Jr JL. Natriuretic peptide testing in heart failure. Circulation. 2011;123:2015–9.

    Article  PubMed  Google Scholar 

  59. Ritchie RH, Irvine JC, Rosenkranz AC, et al. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther. 2009;124:279–300.

    Article  PubMed  CAS  Google Scholar 

  60. Iwanaga Y, Nishi I, Furuichi S, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47:742–8.

    Article  PubMed  CAS  Google Scholar 

  61. Shuai XX, Chen YY, Lu YX, et al. Diagnosis of heart failure with preserved ejection fraction: which parameters and diagnostic strategies are more valuable? Eur J Heart Fail. 2011;13:737–41.

    Article  PubMed  CAS  Google Scholar 

  62. O’Connor CM, Starling RC, Hernandez AF, et al. Effect of Nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    Article  PubMed  Google Scholar 

  63. • Castro LRV, Schittl J, Fischmeister R. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res. 2010;107:1232–40. This study demonstrates that cGMP-PKG signaling is subject to complex differential spatiotemporal regulation and distinct compartmentation with the existence of specific cGMP-PKG “signalosomes” for either natriuretic peptide or NO.

    Article  PubMed  CAS  Google Scholar 

  64. Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res. 2007;100:1569–78.

    Article  PubMed  CAS  Google Scholar 

  65. Mongillo M, Tocchetti CG, Terrin A, et al. Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res. 2006;98:226–34.

    Article  PubMed  CAS  Google Scholar 

  66. Lee DI, Vahebi S, Tocchetti CG, et al. PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol. 2010;105:337–47.

    Article  PubMed  CAS  Google Scholar 

  67. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  PubMed  CAS  Google Scholar 

  68. Solomon SD, Janardhanan R, Verma A, et al. For the Valsartan In Diastolic Dysfunction (VALIDD) Investigators. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomised trial. Lancet. 2007;369:2079–87.

    Article  PubMed  CAS  Google Scholar 

  69. Linke WA. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res. 2008;77:637–48.

    PubMed  CAS  Google Scholar 

  70. • Krüger M, Linke WA. The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem. 2011;286:9905–12. This review article shows the importance of titin in biomechanical signaling and regulation of cardiac remodelling.

    Article  PubMed  Google Scholar 

  71. Trochu JN, Bouhour JB, Kaley G, Hintze TH. Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res. 2000;87:1108–17.

    Article  PubMed  CAS  Google Scholar 

  72. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–7.

    Article  PubMed  CAS  Google Scholar 

  73. Smith CS, Bottomley PA, Schulman SP, et al. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation. 2006;114:1151–8.

    Article  PubMed  CAS  Google Scholar 

  74. Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003;42:328–35.

    Article  PubMed  CAS  Google Scholar 

  75. Rider OJ, Francis JM, Ali MK, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125:1511–9.

    Article  PubMed  CAS  Google Scholar 

  76. Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antiox Redox Signal. 2011;14:289–331.

    Article  CAS  Google Scholar 

  77. Silberman GA, Fan THM, Liu H, et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–28.

    Article  PubMed  CAS  Google Scholar 

  78. Westermann D, Riad A, Richter U, et al. Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol. 2009;104:499–509.

    Article  PubMed  CAS  Google Scholar 

  79. Wilson Tang WH, Tong W, Shrestha K, et al. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure. Eur Heart J. 2008;29:2506–13.

    Article  PubMed  Google Scholar 

  80. McMurray JJV, Carson PE, Komajda M, et al. Heart failure with preserved ejection fraction: Clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail. 2008;10:149–56.

    Article  PubMed  Google Scholar 

  81. Horwich TB, Fonarow GC. Glucose, obesity, metabolic syndrome and diabetes. J Am Coll Cardiol. 2010;55:283–93.

    Article  PubMed  CAS  Google Scholar 

  82. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.

    Article  PubMed  Google Scholar 

  83. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34.

    Article  PubMed  CAS  Google Scholar 

  84. Ingelsson E, Sundström J, Ärnlöv J, et al. Insulin resistance and risk of congestive heart failure. JAMA. 2005;294:334–41.

    Article  PubMed  CAS  Google Scholar 

  85. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16.

    Article  PubMed  Google Scholar 

  86. • Russo C, Jin Z, Homma S, et al. Effect of obesity and overweight on left ventricular diastolic function. A community-based study in an elderly cohort. J Am Coll Cardiol. 2011;57:1368–74. HFpEF patients demonstrate a high prevalence of metabolic risk factors and obesity induces diastolic LV dysfunction independent of other cardiovascular risk factors.

    Article  PubMed  Google Scholar 

  87. Boyer JK, Thanigaraj S, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93:870–5.

    Article  PubMed  Google Scholar 

  88. • Dinh W, Lankisch M, Nickl W, et al. Insulin resistance and glycemic abnormalities are associated with deterioration of left ventricular diastolic function: a cross-sectional study. Cardiovasc Diabet. 2010;9:63–76. This study demonstrates that insulin resistance and glycemic abnormalities induce diastolic LV dysfunction.

    Article  Google Scholar 

  89. De las Fuentes L, Brown AL, Mathews SJ, et al. Metabolic syndrome is associated with abnormal left ventricular diastolic function independent of LV mass. Eur Heart J. 2007;28:553–9.

    Article  PubMed  Google Scholar 

  90. Falcao-Pires I, Hamdani N, Borbely A, et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation. 2011;124:1151–9.

    Article  PubMed  Google Scholar 

  91. Abel ED, Litwin ES, Sweeney G. Cardiac remodelling in obesity. Physiol Rev. 2008;88:389–419.

    Article  PubMed  CAS  Google Scholar 

  92. Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2011;17:325–44.

    Article  Google Scholar 

  93. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy. J Am Coll Cardiol. 2008;51:93–102.

    Article  PubMed  CAS  Google Scholar 

  94. Liu S, Ma X, Gong M, et al. Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species. Free Radic Biol Med. 2007;42:852–63.

    Article  PubMed  Google Scholar 

  95. Giannetta E, Isidori AM, Galea N, et al. Chronic Inhibition of cGMP Phosphodiesterase 5A Improves Diabetic Cardiomyopathy: A Randomized, Controlled Clinical Trial Using Magnetic Resonance Imaging With Myocardial Tagging. Circulation. 2012;125:2323–33.

    Article  PubMed  CAS  Google Scholar 

  96. • Rizzo NO, Maloney E, Pham M, et al. Reduced NO-cGMP signaling contributes to vascular inflammation and insulin resistance induced by high-fat feeding. Arterioscler Thromb Vasc Biol. 2010;30:758–65. This study links oxidative stress, inflammation and insulin resistance to downregulation of NO-cGMP signaling and vascular dysfunction. Inhibition of cGMP breakdown by sildenafil abrogated the detrimental vascular effects of high fat feeding and prevented vascular inflammation and insulin resistance.

    Article  PubMed  CAS  Google Scholar 

  97. Krüger M, Babicz K, von Frieling-Salewsky M, Linke WA. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol. 2010;48:910–6.

    Article  PubMed  Google Scholar 

  98. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.

    Article  PubMed  Google Scholar 

  99. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106:1319–31.

    Article  PubMed  CAS  Google Scholar 

  100. Connelly KA, Kelly DJ, Zhang Y, et al. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail. 2009;2:129–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. van Heerebeek, C.P.M. Franssen, N. Hamdani, and W.J. Paulus are funded through a grant from European Commission FP7 Health 2010, Large Collaborative Research Project on Diastolic Heart Failure MEDIA (261409).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Paulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Heerebeek, L., Franssen, C.P.M., Hamdani, N. et al. Molecular and Cellular Basis for Diastolic Dysfunction. Curr Heart Fail Rep 9, 293–302 (2012). https://doi.org/10.1007/s11897-012-0109-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0109-5

Keywords

Navigation