Current Heart Failure Reports

, Volume 9, Issue 3, pp 174–182 | Cite as

16-kDa Prolactin and Bromocriptine in Postpartum Cardiomyopathy

  • Denise Hilfiker-KleinerEmail author
  • Ingrid Struman
  • Melanie Hoch
  • Edith Podewski
  • Karen Sliwa
Investigative Therapies (J.-L. Balligand, Section editor)


Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease emerging toward the end of pregnancy or in the first postpartal months in previously healthy women. Recent data suggest a central role of unbalanced peri-/postpartum oxidative stress that triggers the proteolytic cleavage of the nursing hormone prolactin (PRL) into a potent antiangiogenic, proapoptotic, and proinflammatory 16-kDa PRL fragment. This notion is supported by the observation that inhibition of PRL secretion by bromocriptine, a dopamine D2-receptor agonist, prevented the onset of disease in an animal model of PPCM and by first clinical experiences where bromocriptine seem to exert positive effects with respect to prevention or treatment of PPCM patients. Here, we highlight the current state of knowledge on diagnosis of PPCM, provide insights into the biology and pathophysiology of 16-kDa PRL and bromocriptine, and outline potential consequences for the clinical management and treatment options for PPCM patients.


Peripartum cardiomyopathy Heart failure Pregnancy Prolactin Bromocriptine Angiogenesis Therapy 



This study was supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Research Foundation (NRF).


No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. 1.
    •• Sliwa K, Hilfiker-Kleiner D, Petrie MC, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12:767–78. This position paper of the ESC study group of peripartum cardiomyopathy summarizes the current knowledge with regard to definition, etiology, and treatment of peripartum cardiomyopathy..PubMedCrossRefGoogle Scholar
  2. 2.
    Pearson GD, Veille JC, Rahimtoola S, et al. Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA. 2000;283:1183–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Sliwa K, Fett J, Elkayam U. Peripartum cardiomyopathy. Lancet. 2006;368:687–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Brar SS, Khan SS, Sandhu GK, et al. Incidence, mortality, and racial differences in peripartum cardiomyopathy. Am J Cardiol. 2007;100:302–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Fett JD. Peripartum cardiomyopathy. Insights from Haiti regarding a disease of unknown etiology. Minn Med. 2002;85:46–8.PubMedGoogle Scholar
  6. 6.
    Fett JD, Christie LG, Carraway RD, Murphy JG. Five-year prospective study of the incidence and prognosis of peripartum cardiomyopathy at a single institution. Mayo Clin Proc. 2005;80:1602–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:3147–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Duran N, Gunes H, Duran I, et al. Predictors of prognosis in patients with peripartum cardiomyopathy. Int J Gynaecol Obstet. 2008;101:137–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Sliwa K, Forster O, Libhaber E, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27:441–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, et al. A Cathepsin D-Cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128:589–600.PubMedCrossRefGoogle Scholar
  11. 11.
    •• Sliwa K, Blauwet L, Tibazarwa K, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010;121:1465–73. This was the first small randomized trial in a PPCM patient collective in South Africa, and suggested a major beneficial effect of bromocriptine to improve recovery from PPCM..PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez C, Parra A, Ramirez-Peredo J, et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest. 2007;87:1009–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Tabruyn SP, Nguyen NQ, Cornet AM, et al. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0-G1 and the G2-M phases. Mol Endocrinol. 2005;19:1932–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Tabruyn SP, Sabatel C, Nguyen NQ, et al. The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via NF-{kappa}B activation. Mol Endocrinol 2007.Google Scholar
  15. 15.
    Tabruyn SP, Sorlet CM, Rentier-Delrue F, et al. The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol. 2003;17:1815–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Demakis JG, Rahimtoola SH. Peripartum cardiomyopathy. Circulation. 1971;44:964–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Selle T, Renger I, Labidi S, et al. Reviewing peripartum cardiomyopathy: current state of knowledge. Future Cardiol. 2009;5:175–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Goland S, Modi K, Bitar F, et al. Clinical profile and predictors of complications in peripartum cardiomyopathy. J Card Fail. 2009;15:645–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Tibazarwa K, Lee G, Mayosi B, et al. The 12-lead ECG in peripartum cardiomyopathy. Cardiovasc J Afr. 2012;23:1–8.PubMedGoogle Scholar
  20. 20.
    Forster O, Hilfiker-Kleiner D, Ansari AA, et al. Reversal of IFN-gamma, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur J Heart Fail. 2008;10:861–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009;53:1475–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Karamitsos TD, Neubauer S. Cardiovascular magnetic resonance: a powerful diagnostic and prognostic tool in modern cardiology. Prog Cardiovasc Dis. 2011;54:179–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Leurent G, Baruteau AE, Larralde A, et al. Contribution of cardiac MRI in the comprehension of peripartum cardiomyopathy pathogenesis. Int J Cardiol. 2009;132:e91–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Kawano H, Tsuneto A, Koide Y, et al. Magnetic resonance imaging in a patient with peripartum cardiomyopathy. Intern Med. 2008;47:97–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Mouquet F, Lions C, de Groote P, et al. Characterisation of peripartum cardiomyopathy by cardiac magnetic resonance imaging. Eur Radiol. 2008;18:2765–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Pearl W. Familial occurrence of peripartum cardiomyopathy. Am Heart J. 1995;129:421–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Pierce JA, Price BO, Joyce JW. Familial occurrence of postpartal heart failure. Arch Intern Med. 1963;111:651–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer GP, Labidi S, Podewski E, et al. Bromocriptine treatment associated with recovery from peripartum cardiomyopathy in siblings: two case reports. J Med Case Rep. 2010;4:80.PubMedCrossRefGoogle Scholar
  29. 29.
    Fett JD, Sundstrom BJ, Etta King M, Ansari AA. Mother-daughter peripartum cardiomyopathy. Int J Cardiol. 2002;86:331–2.PubMedCrossRefGoogle Scholar
  30. 30.
    van Spaendonck-Zwarts KY, van Tintelen JP, van Veldhuisen DJ, et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation. 2010;121:2169–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Morales A, Painter T, Li R, et al. Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation. 2010;121:2176–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Bahl A, Swamy A, Sharma Y, Kumar N. Isolated noncompaction of left ventricle presenting as peripartum cardiomyopathy. Int J Cardiol. 2006;109:422–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Lea B, Bailey AL, Wiisanen ME, et al. Left ventricular noncompaction presenting as peripartum cardiomyopathy. Int J Cardiol. 2012;154:e65–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Rehfeldt KH, Pulido JN, Mauermann WJ, Click RL. Left ventricular hypertrabeculation/noncompaction in a patient with peripartum cardiomyopathy. Int J Cardiol. 2010;139:e18–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Paterick TE, Gerber TC, Pradhan SR, et al. Left ventricular noncompaction cardiomyopathy: what do we know? Rev Cardiovasc Med. 2010;11:92–9.PubMedGoogle Scholar
  36. 36.
    Frischknecht BS, Attenhofer Jost CH, Oechslin EN, et al. Validation of noncompaction criteria in dilated cardiomyopathy, and valvular and hypertensive heart disease. J Am Soc Echocardiogr. 2005;18:865–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Chin TK, Perloff JK, Williams RG, et al. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Stollberger C, Finsterer J. Trabeculation and left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr. 2004;17:1120–1. aothor reply 1121.PubMedCrossRefGoogle Scholar
  39. 39.
    Probst S, Oechslin E, Schuler P, et al. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 2011;4:367–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoedemaekers YM, Caliskan K, Michels M, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet. 2010;3:232–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Walenta K, Schwarz V, Schirmer SH, et al. Circulating microparticles as indicators of peripartum cardiomyopathy. Eur Heart J 2012.Google Scholar
  42. 42.
    Leanos-Miranda A, Marquez-Acosta J, Cardenas-Mondragon GM, et al. Urinary prolactin as a reliable marker for preeclampsia, its severity, and the occurrence of adverse pregnancy outcomes. J Clin Endocrinol Metab. 2008;93:2492–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Melchiorre K, Sutherland GR, Baltabaeva A, et al. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension. 2011;57:85–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Lkhider M, Castino R, Bouguyon E, et al. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci. 2004;117:5155–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferrara N, Clapp C, Weiner R. The 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology. 1991;129:896–900.PubMedCrossRefGoogle Scholar
  46. 46.
    Piwnica D, Touraine P, Struman I, et al. Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocrinol. 2004;18:2522–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Clapp C, Weiner RI. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology. 1992;130:1380–6.PubMedCrossRefGoogle Scholar
  48. 48.
    D’Angelo G, Martini JF, Iiri T, et al. 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol. 1999;13:692–704.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee SH, Kunz J, Lin SH, Yu-Lee LY. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 2007;67:11045–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Gonzalez C, Corbacho AM, Eiserich JP, et al. 16 K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology. 2004;145:5714–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Nguyen NQ, Cornet A, Blacher S, et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16 K hPRL. Mol Ther. 2007;15:2094–100.PubMedCrossRefGoogle Scholar
  52. 52.
    Kinet V, Castermans K, Herkenne S, et al. The angiostatic protein 16 K human prolactin significantly prevents tumor-induced lymphangiogenesis by affecting lymphatic endothelial cells. Endocrinology. 2011;152:4062–71.PubMedCrossRefGoogle Scholar
  53. 53.
    • Kinet V, Nguyen NQ, Sabatel C, et al. Antiangiogenic liposomal gene therapy with 16 K human prolactin efficiently reduces tumor growth. Cancer Lett. 2009;284:222–8. This study describes potential beneficial effects of 16-kDa prolactin in the treatment of cancer..PubMedCrossRefGoogle Scholar
  54. 54.
    Pan H, Nguyen NQ, Yoshida H, et al. Molecular targeting of antiangiogenic factor 16 K hPRL inhibits oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci. 2004;45:2413–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Duenas Z, Rivera JC, Quiroz-Mercado H, et al. Prolactin in eyes of patients with retinopathy of prematurity: implications for vascular regression. Invest Ophthalmol Vis Sci. 2004;45:2049–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Garcia C, Aranda J, Arnold E, et al. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J Clin Invest. 2008;118:2291–300.PubMedGoogle Scholar
  57. 57.
    Habedank D, Kuhnle Y, Elgeti T, et al. Recovery from peripartum cardiomyopathy after treatment with bromocriptine. Eur J Heart Fail 2008.Google Scholar
  58. 58.
    Hilfiker-Kleiner D, Meyer GP, Schieffer E, et al. Recovery from postpartum cardiomyopathy in 2 patients by blocking prolactin release with bromocriptine. J Am Coll Cardiol. 2007;50:2354–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Reuwer AQ, Reuwer PJ, van der Post JA, et al. Prolactin fragmentation by trophoblastic matrix metalloproteinases as a possible contributor to peripartum cardiomyopathy and pre-eclampsia. Med Hypotheses. 2010;74:348–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Macotela Y, Aguilar MB, Guzman-Morales J, et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci. 2006;119:1790–800.PubMedCrossRefGoogle Scholar
  61. 61.
    Holt RI, Barnett AH, Bailey CJ. Bromocriptine: old drug, new formulation and new indication. Diabetes Obes Metab. 2010;12:1048–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Kochenour NK. Lactation suppression. Clin Obstet Gynecol. 1980;23:1045–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Hopp L, Haider B, Iffy L. Myocardial infarction postpartum in patients taking bromocriptine for the prevention of breast engorgement. Int J Cardiol. 1996;57:227–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Y-Hassan S, Jernberg T. Bromocriptine-induced coronary spasm caused acute coronary syndrome, which triggered its own clinical twin–Takotsubo syndrome. Cardiology. 2011;119:1–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Khurana S, Liby K, Buckley AR, Ben-Jonathan N. Proteolysis of human prolactin: resistance to cathepsin D and formation of a nonangiostatic, C-terminal 16 K fragment by thrombin. Endocrinology. 1999;140:4127–32.PubMedCrossRefGoogle Scholar
  66. 66.
    James AH, Brancazio LR, Ortel TL. Thrombosis, thrombophilia, and thromboprophylaxis in pregnancy. Clin Adv Hematol Oncol. 2005;3:187–97.PubMedGoogle Scholar
  67. 67.
    Goland S, Schwarz ER, Siegel RJ, Czer LS. Pregnancy-associated spontaneous coronary artery dissection. Am J Obstet Gynecol. 2007;197:e11–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Patti G, Nasso G, D’Ambrosio A, et al. Myocardial infarction during pregnancy and postpartum: a review. G Ital Cardiol. 1999;29:333–8.PubMedGoogle Scholar
  69. 69.
    Roth A, Elkayam U. Acute myocardial infarction associated with pregnancy. J Am Coll Cardiol. 2008;52:171–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Bolyakov A, Paduch DA. Prolactin in men’s health and disease. Curr Opin Urol. 2011;21:527–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Erem C, Kocak M, Nuhoglu I, et al. Blood coagulation, fibrinolysis and lipid profile in patients with prolactinoma. Clin Endocrinol (Oxf). 2010;73:502–7.Google Scholar
  72. 72.
    Bonuccelli U, Del Dotto P, Rascol O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat Disord. 2009;15 Suppl 4:S44–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Martinez-Martin P, Kurtis MM. Systematic review of the effect of dopamine receptor agonists on patient health-related quality of life. Parkinsonism Relat Disord. 2009;15 Suppl 4:S58–64.PubMedCrossRefGoogle Scholar
  74. 74.
    • Valiquette G. Bromocriptine for diabetes mellitus type II. Cardiol Rev. 2011;19:272–5. This study emphasizes positive effects of bromocriptine treatment in patients with diabetes mellitus type II..PubMedCrossRefGoogle Scholar
  75. 75.
    Gaziano JM, Cincotta AH, O’Connor CM, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33:1503–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Denise Hilfiker-Kleiner
    • 1
    Email author
  • Ingrid Struman
    • 2
  • Melanie Hoch
    • 1
  • Edith Podewski
    • 1
  • Karen Sliwa
    • 3
  1. 1.Department of Cardiology and AngiologyMedizinische Hochschule HannoverHannoverGermany
  2. 2.Unit of Molecular Biology and Genetic Engineering, GIGA-CancerUniversity of LiègeLiègeBelgium
  3. 3.Hatter Institute for Cardiovascular Research in Africa, Department of Medicine & IIDMM, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations