Skip to main content
Log in

Congestion Is the Driving Force Behind Heart Failure

  • Decompensated Heart Failure (MM Givertz, Section editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Increased filling pressures, or congestion, cause symptoms of heart failure and lead to hospitalizations. A higher rate of hospitalizations determines higher mortality. The most reliable way to decrease admissions is to monitor for signs of congestion, by history and exam, intracardiac pressures or biomarkers, and to modify treatment based on these data. The role of congestion is best understood by comparison of heart failure with preserved and reduced ejection fraction. The morbidity and mortality in both conditions is almost identical. Decreased cardiac output and ventricular remodeling play a major role in patients with decreased ejection fraction but not in those with preserved ejection fraction. The key factor that is present in both conditions and determines their similarity is congestion. Decongestion, or fluid removal, is the most effective treatment for heart failure regardless of ejection fraction. Being the driving force of heart failure, congestion should be the focus of clinical and hemodynamic monitoring and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of interest have been highlighted as: • Of importance •• Of major importance

  1. Yancy CW, Fonarow GC, Committee ASA. Quality of care and outcomes in acute decompensated heart failure: the ADHERE registry. Curr Heart Fail Rep. 2004;1:121–8.

    Article  PubMed  Google Scholar 

  2. Tallaj JAP, Aaron M, Abraham W, Heywood JBR, Cho Y, Bennett T. Relationship between right ventricular pressures and heart failure events in patients with heart failure. J Card Fail. 2007;13:S178–9.

    Article  Google Scholar 

  3. Zile MR, Bennett TD, St John Sutton M, Cho YK, Adamson PB, Aaron MF, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433–41.

    Article  PubMed  Google Scholar 

  4. •• Stevenson LW, Zile M, Bennett TD, Kueffer FJ, Jessup ML, Adamson P, et al. Chronic ambulatory intracardiac pressures and future heart failure events. Circ Heart Fail. 2010;3:580–7. This paper demonstrates the importance of congestion and its management for hospital admissions.

    Article  PubMed  Google Scholar 

  5. Adamson PB, Magalski A, Braunschweig F, Bohm M, Reynolds D, Steinhaus D, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;41:565–71.

    Article  PubMed  Google Scholar 

  6. •• Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66. This article on the results of the CHAMPION trial demonstrates reduction in heart failure admission rates with hemodynamic monitoring.

    Article  PubMed  Google Scholar 

  7. • Sharma GV, Woods PA, Lindsey N, O’Connell C, Connolly L, Joseph J, et al. Noninvasive monitoring of left ventricular end-diastolic pressure reduces rehospitalization rates in patients hospitalized for heart failure: a randomized controlled trial. J Card Fail. 2011;17:718–25. This paper further develops the idea of benefits of guiding the therapy in heart failure by hemodynamic parameters.

    Article  PubMed  CAS  Google Scholar 

  8. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP multicenter study. J Am Coll Cardiol. 2007;49:1733–9.

    Article  PubMed  CAS  Google Scholar 

  9. •• Januzzi Jr JL, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881–9. This article is interesting in several respects: it shows the importance of BNP-guided strategy, and highlights the interactions between systolic function and congestion.

    Article  PubMed  CAS  Google Scholar 

  10. Lee DAP, Stukel T, Alter D, Chong A, PArker J, Tu J. “Dose-dependent” impact of recurrent cardiac events on mortality in patients with heart failure. Am J Med. 2009;122:162.e1–.e9.

    Article  Google Scholar 

  11. •• Guglin M. Key role of congestion in natural history of heart failure. Int J Gen Med. 2011;4:585–91. This paper underscores the inconsistencies in current understanding of the concept of heart failure, and suggests a new model explaining all varieties of the disease.

    PubMed  Google Scholar 

  12. Damman K, Voors AA, Hillege HL, Navis G, Lechat P, van Veldhuisen DJ, et al. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Hear Fail. 2010;12:974–82.

    Article  Google Scholar 

  13. Kjaergaard J, Akkan D, Iversen KK, Kjoller E, Kober L, Torp-Pedersen C, et al. Prognostic importance of pulmonary hypertension in patients with heart failure. Am J Cardiol. 2007;99:1146–50.

    Article  PubMed  Google Scholar 

  14. Kjaergaard J, Akkan D, Iversen KK, Kober L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007;9:610–6.

    Article  PubMed  Google Scholar 

  15. •• Bursi F, McNallan SM, Redfield MM, Nkomo VT, Lam CS, Weston SA, et al. Pulmonary pressures and death in heart failure a community study. J Am Coll Cardiol. 2012;59:222–31. This study from Mayo Clinic shows the importance of pulmonary hypertension as a prognostic factor in heart failure.

    Article  PubMed  Google Scholar 

  16. Neuman Y, Kotliroff A, Bental T, Siegel RJ, David D, Lishner M. Pulmonary artery pressure and diastolic dysfunction in normal left ventricular systolic function. Int J Cardiol. 2007.

  17. Dini FL, Nuti R, Barsotti L, Baldini U, Dell’Anna R, Micheli G. Doppler-derived mitral and pulmonary venous flow variables are predictors of pulmonary hypertension in dilated cardiomyopathy. Echocardiography. 2002;19:457–65.

    Article  PubMed  Google Scholar 

  18. Enriquez-Sarano M, Rossi A, Seward JB, Bailey KR, Tajik AJ. Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol. 1997;29:153–9.

    Article  PubMed  CAS  Google Scholar 

  19. Guglin M. Pulmonary vasodilation in acute and chronic heart failure: empiricism and evidence. Curr Heart Fail Rep. 2011;8:219–25.

    Article  PubMed  CAS  Google Scholar 

  20. • Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124:164–74. This study demonstrated hemodynamic and clinical benefits of sildenafil in heart failure with preserved systolic function.

    Article  PubMed  CAS  Google Scholar 

  21. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    Article  PubMed  Google Scholar 

  22. Maeder MHD, Kaye D. Does tricuspid regurgitation contribute to renal dysfunction in patients with heart failure. J Card Fail. 2008;14:S84.

    Article  Google Scholar 

  23. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  Google Scholar 

  24. Guglin M, Rivero A, Matar F, Garcia M. Renal dysfunction in heart failure is due to congestion but not low output. Clin Cardiol. 2011;34:113–6.

    Article  PubMed  Google Scholar 

  25. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  PubMed  CAS  Google Scholar 

  26. Ansari M, Alexander M, Tutar A, Massie BM. Incident cases of heart failure in a community cohort: importance and outcomes of patients with preserved systolic function. Am Heart J. 2003;146:115–20.

    Article  PubMed  Google Scholar 

  27. Berry C, Hogg K, Norrie J, Stevenson K, Brett M, McMurray J. Heart failure with preserved left ventricular systolic function: a hospital cohort study. Heart. 2005;91:907–13.

    Article  PubMed  CAS  Google Scholar 

  28. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. JAMA: J Am Med Assoc. 2006;296:2209–16.

    Article  CAS  Google Scholar 

  29. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  30. Varela-Roman A, Gonzalez-Juanatey JR, Basante P, Trillo R, Garcia-Seara J, Martinez-Sande JL, et al. Clinical characteristics and prognosis of hospitalised inpatients with heart failure and preserved or reduced left ventricular ejection fraction. Heart. 2002;88:249–54.

    Article  PubMed  CAS  Google Scholar 

  31. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9.

    Article  PubMed  CAS  Google Scholar 

  32. Varela-Roman A, Grigorian L, Barge E, Bassante P, de la Pena MG, Gonzalez-Juanatey JR. Heart failure in patients with preserved and deteriorated left ventricular ejection fraction. Heart (British Cardiac Society). 2005;91:489–94.

    Article  CAS  Google Scholar 

  33. Senni M, Redfield MM. Heart failure with preserved systolic function. A different natural history? J Am Coll Cardiol. 2001;38:1277–82.

    Article  PubMed  CAS  Google Scholar 

  34. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol. 1999;33:1948–55.

    Article  PubMed  CAS  Google Scholar 

  35. Sweitzer NK, Lopatin M, Yancy CW, Mills RM, Stevenson LW. Comparison of clinical features and outcomes of patients hospitalized with heart failure and normal ejection fraction (> or =55 %) versus those with mildly reduced (40 % to 55 %) and moderately to severely reduced (<40 %) fractions. Am J Cardiol. 2008;101:1151–6.

    Article  PubMed  Google Scholar 

  36. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2011. doi:10.1093/eurheartj/ehr254

  37. Grigorian-Shamagian L, Otero Ravina F, Abu Assi E, Vidal Perez R, Teijeira-Fernandez E, Varela Roman A, et al. Why and when do patients with heart failure and normal left ventricular ejection fraction die? Analysis of >600 deaths in a community long-term study. Am Hear J. 2008;156:1184–90.

    Article  Google Scholar 

  38. Al-Khatib SM, Shaw LK, O’Connor C, Kong M, Califf RM. Incidence and predictors of sudden cardiac death in patients with diastolic heart failure. J Cardiovasc Electrophysiol. 2007;18:1231–5.

    Article  PubMed  Google Scholar 

  39. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet. 2003;362:777–81.

    Article  PubMed  CAS  Google Scholar 

  40. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.

    Article  PubMed  CAS  Google Scholar 

  41. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  PubMed  CAS  Google Scholar 

  42. Andrew P. Diastolic heart failure demystified. Chest. 2003;124:744–53.

    Article  PubMed  Google Scholar 

  43. Maurer MS, King DL, El-Khoury Rumbarger L, Packer M, Burkhoff D. Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail. 2005;11:177–87.

    Article  PubMed  Google Scholar 

  44. Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the cardiovascular health study. J Am Coll Cardiol. 2007;49:972–81.

    Article  PubMed  Google Scholar 

  45. Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115:1982–90.

    Article  PubMed  Google Scholar 

  46. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation. 2002;105:1503–8.

    Article  PubMed  Google Scholar 

  47. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.

    Article  PubMed  Google Scholar 

  48. Victor BM, Barron JT. Diastolic heart failure versus diastolic dysfunction: difference in renal function. Clin Cardiol. 2010;33:770–4.

    Article  PubMed  Google Scholar 

  49. Bowling CB, Feller MA, Mujib M, Pawar PP, Zhang Y, Ekundayo OJ, et al. Relationship between stage of kidney disease and incident heart failure in older adults. Am J Nephrol. 2011;34:135–41.

    Article  PubMed  Google Scholar 

  50. Henkel DM, Redfield MM, Weston SA, Gerber Y, Roger VL. Death in heart failure: a community perspective. Circ Heart Fail. 2008;1:91–7.

    Article  PubMed  Google Scholar 

  51. Zafrir B, Paz H, Wolff R, Salman N, Merhavi D, Lewis BS, et al. Mortality rates and modes of death in heart failure patients with reduced versus preserved systolic function. Eur J Intern Med. 2011;22:53–6.

    Article  PubMed  Google Scholar 

  52. Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, Miller AB, et al. Mode of death in patients with heart failure and a preserved ejection fraction: results from the irbesartan in heart failure with preserved ejection fraction study (I-preserve) trial. Circulation. 2010;121:1393–405.

    Article  PubMed  Google Scholar 

  53. Grigorian Shamagian L, Gonzalez-Juanatey JR, Roman AV, Acuna JM, Lamela AV. The death rate among hospitalized heart failure patients with normal and depressed left ventricular ejection fraction in the year following discharge: evolution over a 10-year period. Eur Heart J. 2005;26:2251–8.

    Article  PubMed  Google Scholar 

  54. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  55. Richardson A, Bayliss J, Scriven AJ, Parameshwar J, Poole-Wilson PA, Sutton GC. Double-blind comparison of captopril alone against frusemide plus amiloride in mild heart failure. Lancet. 1987;2:709–11.

    Article  PubMed  CAS  Google Scholar 

  56. Cowley AJ, Stainer K, Wynne RD, Rowley JM, Hampton JR. Symptomatic assessment of patients with heart failure: double-blind comparison of increasing doses of diuretics and captopril in moderate heart failure. Lancet. 1986;2:770–2.

    Article  PubMed  CAS  Google Scholar 

  57. van Kraaij DJ, Jansen RW, Bruijns E, Gribnau FW, Hoefnagels WH. Diuretic usage and withdrawal patterns in a Dutch geriatric patient population. J Am Geriatr Soc. 1997;45:918–22.

    PubMed  Google Scholar 

  58. Mathur PN, Pugsley SO, Powles AC, McEwan MP, Campbell EJ. Effect of diuretics on cardiopulmonary performance in severe chronic airflow obstruction. A controlled clinical trial. Arch Intern Med. 1984;144:2154–7.

    Article  PubMed  CAS  Google Scholar 

  59. Andrews R, Charlesworth A, Evans A, Cowley AJ. A double-blind, cross-over comparison of the effects of a loop diuretic and a dopamine receptor agonist as first line therapy in patients with mild congestive heart failure. Eur Heart J. 1997;18:852–7.

    Article  PubMed  CAS  Google Scholar 

  60. Grinstead WC, Francis MJ, Marks GF, Tawa CB, Zoghbi WA, Young JB. Discontinuation of chronic diuretic therapy in stable congestive heart failure secondary to coronary artery disease or to idiopathic dilated cardiomyopathy. Am J Cardiol. 1994;73:881–6.

    Article  PubMed  CAS  Google Scholar 

  61. Ahmed A, Young JB, Love TE, Levesque R, Pitt B. A propensity-matched study of the effects of chronic diuretic therapy on mortality and hospitalization in older adults with heart failure. Int J Cardiol. 2008;125:246–53.

    Article  PubMed  Google Scholar 

  62. Neuberg GW, Miller AB, O’Connor CM, Belkin RN, Carson PE, Cropp AB, et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am Heart J. 2002;144:31–8.

    Article  PubMed  Google Scholar 

  63. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97:1759–64.

    Article  PubMed  CAS  Google Scholar 

  64. Domanski M, Norman J, Pitt B, Haigney M, Hanlon S, Peyster E. Diuretic use, progressive heart failure, and death in patients in the Studies Of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 2003;42:705–8.

    Article  PubMed  CAS  Google Scholar 

  65. • Guglin M. Reappraisal of the role of diuretics in heart failure. Cardiol Rev. 2009;17:56–9. This is a critical analysis of the existing literature on diuretics in heart failure.

    Article  PubMed  Google Scholar 

  66. Mielniczuk LM, Tsang SW, Desai AS, Nohria A, Lewis EF, Fang JC, et al. The association between high-dose diuretics and clinical stability in ambulatory chronic heart failure patients. J Card Fail. 2008;14:388–93. This study introduces the concept that high dose of diuretics is a marker but not the cause of instability in heart failure.

    Article  PubMed  CAS  Google Scholar 

  67. Guglin M. Diuretics as pathogenetic treatment for heart failure. Int J Gen Med. 2011;4:91–8.

    PubMed  Google Scholar 

  68. •• Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265–72. This is a subanalysis of the ESCAPE trial showing mortality benefits from aggressive diuresis.

    Article  PubMed  Google Scholar 

  69. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797–805.

    Article  PubMed  CAS  Google Scholar 

  70. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012;59:442–51.

    Article  PubMed  Google Scholar 

  71. Rubboli A, Sobotka PA, Euler DE. Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol. 1994;267:H1054–61.

    PubMed  CAS  Google Scholar 

  72. Parrinello G, Paterna S, Di Pasquale P, Torres D, Mezzero M, Cardillo M, et al. Changes in estimating echocardiography pulmonary capillary wedge pressure after hypersaline plus furosemide versus furosemide alone in decompensated heart failure. J Card Fail. 2011;17:331–9.

    Article  PubMed  CAS  Google Scholar 

  73. Ip JE, Cheung JW, Park D, Hellawell JL, Stein KM, Iwai S, et al. Temporal associations between thoracic volume overload and malignant ventricular arrhythmias: a study of intrathoracic impedance. J Cardiovasc Electrophysiol. 2011;22:293–9.

    Article  PubMed  Google Scholar 

  74. Moore HJ, Peters MN, Franz MR, Karasik PE, Singh SN, Fletcher RD. Intrathoracic impedance preceding ventricular tachyarrhythmia episodes. Pacing Clin Electrophysiol. 2010;33:960–6.

    PubMed  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Guglin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglin, M. Congestion Is the Driving Force Behind Heart Failure. Curr Heart Fail Rep 9, 219–227 (2012). https://doi.org/10.1007/s11897-012-0093-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0093-9

Keywords

Navigation