Skip to main content

Advertisement

Log in

Renal Biomarkers of Kidney Injury in Cardiorenal Syndrome

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The cardiorenal syndromes comprise a group of disorders in which impairment of either the heart or the kidney results in injury to the other. Although the pathophysiology is not yet well understood, the clinical consequences are increasingly recognized. In congestive heart failure, the development of worsening renal function is associated with increased hospitalizations and death. Urinary biomarkers offer a rapid and noninvasive method for detecting kidney injury. The role of urinary biomarkers such as neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, N-acetyl-β-D-glucosaminidase, interleukin-18, and cystatin C are being investigated to provide diagnostic, prognostic, and, eventually, therapeutic information. This article reviews the utility of urinary biomarkers in congestive heart failure and explores directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–214.

    Article  PubMed  Google Scholar 

  2. • Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010;31:703–11. This is a detailed description of the five types of cardiorenal syndromes.

    PubMed  Google Scholar 

  3. •• Sarraf M, Masoumi A, Schrier R. Cardiorenal syndrome in acute decompensated heart failure. CJASN 2009;4:2013–26. This is a thorough, in-depth review of the proposed pathophysiology involved in cardiorenal syndromes.

    PubMed  CAS  Google Scholar 

  4. •• Stenvinkel P, Carrero JJ, Axelson J, et al. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? CJASN 2008, 3: 505–21. This is an excellent discussion of systemic effects in chronic kidney disease and their contribution to morbidity and mortality.

    PubMed  CAS  Google Scholar 

  5. Gottlieb SS, Abraham W, Butler J, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Failure. 2002;8:136–41.

    Article  Google Scholar 

  6. Damman K, Deursen VM, Navis G, et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  7. Damman K, Voors AA, Hillege HL, et al. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J of Heart Fail 2010;1–9.

  8. Nohria A, Hasselblad V, Stebbens A, et al. Cardiorenal interactions insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268–74.

    Article  PubMed  Google Scholar 

  9. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  Google Scholar 

  10. Knight EL, Glynn RJ, McIntyre KM, et al. Predictors of decreased renal function in patients with heart failure during angiotensin-converting enzyme inhibitor therapy: results from the studies of left ventricular dysfunction (SOLVD). Am Heart J. 1999;138:849–55.

    Article  PubMed  CAS  Google Scholar 

  11. Cowie MR, Komajda M, Murray-Thomas T, et al. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J. 2006;27:1216–22.

    Article  PubMed  Google Scholar 

  12. Damman K, Navis G, Smilde TDJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J of Heart Fail. 2007;9:872–8.

    Article  Google Scholar 

  13. Perez AV, Otawa K, Zimmermann AV, et al. The impact of impaired renal function on mortality in patients with acutely decompensated chronic heart failure. Eur J of Heart Failure. 2010;12:122–8.

    Article  Google Scholar 

  14. Mullens W, Abrahams Z, Skouri HN, et al. Elevated intra-abdominal pressure in acute decompensated heart failure. J Am Coll Cardiol. 2008;51:300–6.

    Article  PubMed  Google Scholar 

  15. Mullens W, Abrahams Z, Francis GS, et al. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J of Card Fail. 2008;14:508–14.

    Article  Google Scholar 

  16. Constanza MR, Saltzberg MT, Jessup M, et al. Ultrafiltration is associated with fewer hospitalizations than continuous diuretic infusion in patients with decompensated heart failure: results from UNLOAD. J of Card Fail. 2010;16:277–84.

    Article  Google Scholar 

  17. Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. JACC. 2004;43:61–7.

    PubMed  Google Scholar 

  18. Metra M, Nodari S, Parrinello G, et al. Worsening renal function in patients hospitalized for acute heart failure: clinical implications and prognostic significance. Eur J of Heart Fail. 2008;10:188–95.

    Article  Google Scholar 

  19. Smith GL, Lichtman JH, Bracken MB, et al. Renal Impairment and outcomes in heart failure. J Am Coll Cardiol. 2006;47:1987–96.

    Article  PubMed  Google Scholar 

  20. Damman K, Jaarsma T, Voors AA, et al. Both in- and out-hospital worsening of renal function predict outcome in patients with heart failure: results from the Coordinating Study Evaluating Outcome of Advising and Counseling in Heart Failure (COACH). Eur J of Heart Fail. 2009;11:847–54.

    Article  Google Scholar 

  21. Cruz DM, Goh CY, Haase-Fielitz A, et al. Early biomarkers of renal injury. Congest Heart Fail. 2010;16:S25–31.

    Article  PubMed  CAS  Google Scholar 

  22. Lainscak M, Anker MS, Haehling S, et al. Biomarkers for chronic heart failure. Herz. 2009;34:589–93.

    Article  PubMed  Google Scholar 

  23. Hillege HL, Janssen WMT, Bak AAA, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001;249:519–26.

    Article  PubMed  CAS  Google Scholar 

  24. Bonnet F, Marre M, Halimi JM, et al. Waist circumference and the metabolic syndrome predict the development of elevated albuminuria in non-diabetic subjects: the DESIR Study. J of Hypertension. 2006;24:1157–63.

    Article  CAS  Google Scholar 

  25. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  PubMed  CAS  Google Scholar 

  26. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110:32–5.

    Article  PubMed  CAS  Google Scholar 

  27. Gerstein HC, Mann JFE, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  PubMed  CAS  Google Scholar 

  28. Reffelmann T, Dorr M, Volzke H, et al. Urinary albumin excretion, even within the normal range, predicts an increase in left ventricular mass over the follow 5 years. Kidney Int. 2010;77:1115–22.

    Article  PubMed  CAS  Google Scholar 

  29. Ingelsson E, Sundstrom J, Lind L, et al. Low-grade albuminuria and the incidence of heart failure in a community-based cohort of elderly men. Eur Heart J. 2007;28:1739–45.

    Article  PubMed  CAS  Google Scholar 

  30. • Jackson CE, Soloman SD, Gerstein HC, et al. Albuminura in chronic heart failure: prevalence and prognostic importance. Lancet 2009;374:543–50. This is an interesting analysis of the morbidity and mortality of albuminuria from the CHARM (Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity) trial.

    Article  PubMed  CAS  Google Scholar 

  31. • Masson S, Latini VM, Moretti L, et al. Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure. Circulation Heart Failure 2010;3:65–72. This is a second interesting analysis of the morbidity and mortality of albuminuria from the GISSI (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico [Italian group for the study of the survival of myocardial infarction]) trial.

    Article  PubMed  CAS  Google Scholar 

  32. Anand IS, Bishu K, Rector TS, et al. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensin-converting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009;120:1577–84.

    Article  PubMed  CAS  Google Scholar 

  33. Bolignano D, Coppolino G, Romeo A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) reflects iron status in haemodialysis patients. Nephrol Dial Transplant. 2009;24:3398–403.

    Article  PubMed  CAS  Google Scholar 

  34. Malysko J, Tesar V, Macdougall IC. Neutrophil gelatinase-associated lipocalin and hepcidin: what do they have in common and is there a potential interaction? Kidney Blood Press Res. 2010;33:157–65.

    Article  Google Scholar 

  35. Friedl A, Stoesz SP, Buckley P, et al. Neutrophil gelatinase associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J. 1999;31:433–41.

    Article  PubMed  CAS  Google Scholar 

  36. Meijer E, Boertien WE, Nauta FL, et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kid Dis. 2010;56:883–95.

    Article  PubMed  CAS  Google Scholar 

  37. Ding H, He Y, Li K, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol. 2007;123:227–34.

    Article  PubMed  CAS  Google Scholar 

  38. Paragas N, Nickolas TL, Wyatt C, et al. Urinary NGAL marks cystic disease in HIV-associated nephropathy. JASN. 2009;20:1687–92.

    PubMed  CAS  Google Scholar 

  39. Yilmaz A, Sevketoglu E, Gedikbasi A, et al. Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol. 2009;24:2387–92.

    Article  PubMed  Google Scholar 

  40. Bagshaw SM, Bennett M, Haase M, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 2010;36:452–61.

    Article  PubMed  CAS  Google Scholar 

  41. Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. CJASN. 2008;3:665–74.

    PubMed  Google Scholar 

  42. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  PubMed  CAS  Google Scholar 

  43. Tuladhar SM, Puntmann VO, Soni M, et al. Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass. J Cardiovasc Pharmacol. 2009;53:261–6.

    Article  PubMed  CAS  Google Scholar 

  44. Han W, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. CJASN. 2009;4:873–82.

    PubMed  CAS  Google Scholar 

  45. Xin C, Yulong X, Yu C, et al. Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Ren Fail. 2008;30:904–13.

    Article  PubMed  Google Scholar 

  46. Heise D, Rentsch K, Braeuer A, et al. Comparison of urinary neutrophil glucosaminidase-associated lipocalin, cystatin-C, and α1-microglobulin for early detection of acute renal injury after cardiac surgery. European J of Cardio-Thoracic Surgery 2010; in press.

  47. Damman K, Veldhuisen DJ, Navis G, et al. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. European J of Heart Failure. 2008;10:997–1000.

    Article  CAS  Google Scholar 

  48. Damman K, Veldhuisen DJ, Navis G, et al. Tubular damage is chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96:1297–302.

    Article  PubMed  CAS  Google Scholar 

  49. Aghel A, Shrestha K, Mullens W, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J of Cardiac Failure. 2010;16:49–54.

    Article  CAS  Google Scholar 

  50. Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010;16:1–6.

    Article  Google Scholar 

  51. Han WK, Alinani A, Wu CL, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. JASN. 2005;16:1126–34.

    PubMed  CAS  Google Scholar 

  52. Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-β-(D)-glucosaminidase activity and kidney injury molecule-1 are associated with adverse outcomes in acute renal failure. JASN. 2007;18:904–12.

    PubMed  CAS  Google Scholar 

  53. Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43:405–11.

    Article  PubMed  CAS  Google Scholar 

  54. Parikh CR, Mishra J, Theissen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203.

    Article  PubMed  CAS  Google Scholar 

  55. Haase M, Bellomo R, Story D, et al. Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit Care. 2008;12:1–8.

    Article  Google Scholar 

  56. Parikh CR, Abraham E, Ancukiewicz M, et al. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. JASN. 2005;16:3046–52.

    PubMed  CAS  Google Scholar 

  57. Fricker M, Wiesli P, Brandle M, et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;63:1944–7.

    Article  PubMed  CAS  Google Scholar 

  58. Koyner JL, Bennett MR, Worcester EM, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008;74:1059–69.

    Article  PubMed  CAS  Google Scholar 

  59. Nejat M, Pickering JW, Walker RJ, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14:1–1.

    Article  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areef Ishani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comnick, M., Ishani, A. Renal Biomarkers of Kidney Injury in Cardiorenal Syndrome. Curr Heart Fail Rep 8, 99–105 (2011). https://doi.org/10.1007/s11897-011-0052-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0052-x

Keywords

Navigation