Skip to main content

Advertisement

Log in

CT for assessing ventricular remodeling: Is it ready for prime time?

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Reliable assessment of left ventricular size and systolic function has important prognostic and therapeutic implications for patients with heart disease. CT technology is advancing rapidly and can be used for noninvasive assessment of the coronary anatomy. Without additional radiation or contrast, the already acquired image data set can be used for analysis of left ventricular size, mass, and systolic function. In comparison with other noninvasive modalities, multidetector CT has superior spatial resolution but temporal resolution has suffered. Recent advances, including multisegment reconstruction and dual-source scanning, have improved the temporal resolution substantially. MRI is the current gold standard for assessing the left ventricle. Many small comparative studies suggest that CT has good agreement with MRI and that it could potentially replace MRI in some patients, especially those with internal cardiac devices. The use of CT to assess ventricular remodeling is limited by the use of contrast and radiation, but its widespread availability, ease of use, and improved temporal resolution suggest that multidetector CT will have expansive use in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sanz G, Castaner A, Betriu A, et al.: Determinants of prognosis in survivors of myocardial infarction: a prospective clinical angiographic study. N Engl J Med 1982, 306:1065–1070.

    PubMed  CAS  Google Scholar 

  2. White HD, Norris RM, Brown MA, et al.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987, 76:44–51.

    PubMed  CAS  Google Scholar 

  3. Bardy GH, Lee KL, Mark DB, et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005, 352:225–237. [Published erratum appears in N Engl J Med 2005, 352:2146.]

    Article  PubMed  CAS  Google Scholar 

  4. American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease); Society of Cardiovascular Anesthesiologists; Bonow RO, Carabello BA, Chatterjee K, et al.: ACC/AHA 2006 guidelines for the management of valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 2006, 48:e1–e148.

    Article  PubMed  Google Scholar 

  5. Groenning BA, Nilsson JC, Sondergaard L, et al.: Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol 2000, 36:2072–2080.

    Article  PubMed  CAS  Google Scholar 

  6. Ambrose J, Hounsfield G: Computerized transverse axial tomography. Br J Radiol 1973, 46:148–149.

    PubMed  CAS  Google Scholar 

  7. Harell GS, Guthaner DF, Breiman RS, et al.: Stopaction cardiac computed tomography. Radiology 1977, 123:515–517.

    PubMed  CAS  Google Scholar 

  8. Horiguchi J, Shen Y, Akiyama Y, et al.: Electron beam CT versus 16-MDCT on the variability of repeated coronary artery calcium measurements in a variable heart rate phantom. AJR Am J Roentgenol 2005, 185:995–1000.

    Article  PubMed  Google Scholar 

  9. Scheffel H, Alkadhi H, Plass A, et al.: Accuracy of dualsource CT coronary angiography: first experience in a high pretest probability population without heart rate control. Eur Radiol 2006, 16:2739–2747.

    Article  PubMed  Google Scholar 

  10. Thompson BH, Stanford W: Evaluation of cardiac function with ultrafast computed tomography. Radiol Clin North Am 1994, 32:537–551.

    PubMed  CAS  Google Scholar 

  11. Rich S, Chomka EV, Stagl R, et al.: Determination of left ventricular ejection fraction using ultrafast computed tomography. Am Heart J 1986, 112:392–396.

    Article  PubMed  CAS  Google Scholar 

  12. Reiter SJ, Rumberger JA, Feiring AJ, et al.: Precision of measurements of right and left ventricular volume by cine computed tomography. Circulation 1986, 74:890–900.

    PubMed  CAS  Google Scholar 

  13. Ringertz HG, Rodgers B, Lipton MJ, et al.: Assessment of human right ventricular cast volume by CT and angiocardiography. Invest Radiol 1985, 20:29–32.

    Article  PubMed  CAS  Google Scholar 

  14. Lembcke A, Hein PA, Dohmen PM, et al.: Pictorial review: electron beam computed tomography and multislice spiral computed tomography for cardiac imaging. Eur J Radiol 2006, 57:356–367.

    Article  PubMed  Google Scholar 

  15. Mahnken AH, Spuentrup E, Niethammer M, et al.: Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 2003, 44:604–611.

    Article  PubMed  CAS  Google Scholar 

  16. Juergens KU, Grude M, Fallenberg EM, et al.: Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am J Roentgenol 2002, 179:1545–1550.

    PubMed  Google Scholar 

  17. van der Vleuten PA, Willems TP, Gotte MJ, et al.: Quantification of global left ventricular function: comparison of multidetector computed tomography and magnetic resonance imaging. A meta-analysis and review of the current literature. Acta Radiol 2006, 47:1049–1057.

    Article  PubMed  Google Scholar 

  18. Schlosser T, Mohrs OK, Magedanz A, et al.: Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 2007, 48:30–35.

    Article  PubMed  CAS  Google Scholar 

  19. Dewey M, Muller M, Eddicks S, et al.: Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography, and two dimensional transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol 2006, 48:2034–2044.

    Article  PubMed  Google Scholar 

  20. Sugeng L, Mor-Avi V, Weinert L, et al.: Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006, 114:654–661.

    Article  PubMed  Google Scholar 

  21. Schepis T, Gaemperli O, Koepfli P, et al.: Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J Nucl Med 2006, 47:1288–1294.

    PubMed  Google Scholar 

  22. Abbara S, Chow BJ, Pena AJ, et al.: Assessment of left ventricular function with 16-and 64-slice multi-detector computed tomography. Eur J Radiol 2007 [Epub ahead of print].

  23. Kondo C, Mori S, Endo M, et al.: Real-time volumetric imaging of human heart without electrocardiographic gating by 256-detector row computed tomography: initial experience. J Comput Assist Tomogr 2005, 29:694–698.

    Article  PubMed  Google Scholar 

  24. Mori S, Kondo C, Suzuki N, et al.: Volumetric coronary angiography using the 256-detector row computed tomography scanner: comparison in vivo and in vitro with porcine models. Acta Radiol 2006, 47:186–191.

    Article  PubMed  CAS  Google Scholar 

  25. Mizuno N, Funabashi N, Imada M, et al.: Utility of 256-slice cone beam tomography for real four-dimensional volumetric analysis without electrocardiogram gated acquisition. Int J Cardiol 2007, 120:262–267.

    Article  PubMed  Google Scholar 

  26. Ritchie CJ, Godwin JD, Crawford CR, et al.: Minimum scan speeds for suppression of motion artifacts in CT. Radiology 1992, 185:37–42.

    PubMed  CAS  Google Scholar 

  27. Miller S, Simonetti OP, Carr J, et al.: MR imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 2002, 223:263–269.

    Article  PubMed  Google Scholar 

  28. Mahnken AH, Bruder H, Suess C, et al.: Dual-source computed tomography for assessing cardiac function: a phantom study. Invest Radiol 2007, 42:491–498.

    Article  PubMed  Google Scholar 

  29. Brodoefel H, Kramer U, Reimann A, et al.: Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 2007, 189:1064–1070.

    Article  PubMed  Google Scholar 

  30. Salem R, Remy-Jardin M, Delhaye D, et al.: Integrated cardio-thoracic imaging with ECG-gated 64-slice multidetector-row CT: initial findings in 133 patients. Eur Radiol 2006, 16:1973–1981.

    Article  PubMed  Google Scholar 

  31. Thompson RC, Cullom SJ: Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006, 13:19–23.

    Article  PubMed  Google Scholar 

  32. Hesse B, Murphy RT, Sigurdsson G, et al.: Use of tissue Doppler imaging to guide tube current modulation in cardiac multidetector computed tomographic angiography. Am J Cardiol 2006, 98:603–607.

    Article  PubMed  Google Scholar 

  33. Abada HT, Larchez C, Daoud B, et al.: MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 2006, 186:S387–S390.

    Article  PubMed  Google Scholar 

  34. Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006, 113:1305–1310.

    Article  PubMed  Google Scholar 

  35. Hsieh J, Londt J, Vass M, et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 2006, 33:4236–4248.

    Article  PubMed  Google Scholar 

  36. Sigurdsson G, Carrascosa P, Yamani MH, et al.: Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol 2006, 48:772–778.

    Article  PubMed  Google Scholar 

  37. Andreini D, Pontone G, Pepi M, et al.: Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 2007, 49:2044–2050.

    Article  PubMed  Google Scholar 

  38. Strub WM, Vagal A, Meyer C: Optimizing coronary artery imaging in patients with atrial fibrillation with ECG-gated 64-MDCT. AJR Am J Roentgenol 2007, 189:W50–W51.

    Article  PubMed  Google Scholar 

  39. Hendel RC, Patel MR, Kramer CM, et al.: ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006, 48:1475–1497.

    Article  PubMed  Google Scholar 

  40. Mahnken AH, Bruners P, Muhlenbruch G, et al.: Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 2007, 42:123–129.

    Article  PubMed  Google Scholar 

  41. Lardo AC, Cordeiro MA, Silva C, et al.: Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006, 113:394–404.

    Article  PubMed  Google Scholar 

  42. Koyama Y, Mochizuki T, Higaki J: Computed tomography assessment of myocardial perfusion, viability, and function. J Magn Reson Imaging 2004, 19:800–815.

    Article  PubMed  Google Scholar 

  43. George RT, Silva C, Cordeiro MA, et al.: Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 2006, 48:153–160.

    Article  PubMed  Google Scholar 

  44. Carrascosa P, Capunay C, Carrascosa J, et al.: Combined assessment of coronary artery stenosis and myocardial ischemia by rest-dipyridamole stress multidetector computed tomography [abstract]. J Cardiol Comput Tomogr 2007, 1:S11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gardar Sigurdsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigurdsson, G. CT for assessing ventricular remodeling: Is it ready for prime time?. Curr Heart Fail Rep 5, 16–22 (2008). https://doi.org/10.1007/s11897-008-0004-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-008-0004-2

Keywords

Navigation