Skip to main content

Advertisement

Log in

Role of adenosine antagonism in the cardio-renal syndrome: Pathophysiology and therapeutic potential

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The adversarial relationship between the heart and the kidney in heart failure results from normal homeostatic mechanisms which become inappropriate in the setting of heart failure. The cardio-renal syndrome represents the sum total of this adversarial relation and is clinically manifest as worsening renal function limiting diuresis in spite of volume overload. Tubuloglomerular feedback is a major pathophysiologic component of this syndrome. Adenosine, acting via A1 receptors, plays a major role in tubuloglomerular feedback in the normal state and in cardio-renal syndrome. Preclinical studies and initial human studies suggest that adenosine antagonism increases diuresis and preserves glomerular filtration in the setting of decompensated heart failure. Considering the ubiquitous distribution of adenosine receptors in the body, it is crucial to tailor this therapeutic agent to avoid side effects, especially neurotoxicity. Larger studies are presently underway to understand the therapeutic potential of this novel class of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Acute Decompensated Heart Failure National Registry (ADHERE) Q1 2006 Final Cumulative National Benchmark Report. http://www.adhereregistry.com/ADHEREQ102BMR_FINAL.pdf. Accessed June 20, 2007.

  2. Cleland JG, Swedberg K, Follath F, et al.: The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J 2003, 24:442–463.

    Article  PubMed  CAS  Google Scholar 

  3. Forman DE, Butler J, Wang Y, et al.: Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 2004, 43:61–67.

    Article  PubMed  Google Scholar 

  4. Weinfeld MS, Chertow GM, Stevenson LW: Aggravated renal dysfunction during intensive therapy for advanced chronic heart failure. Am Heart J 1999, 138:285–290.

    Article  PubMed  CAS  Google Scholar 

  5. Smith GL, Lichtman JH, Bracken MB, et al.: Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol 2006, 47:1987–1996.

    Article  PubMed  Google Scholar 

  6. Leithe ME, Margorien RD, Hermiller JB, et al.: Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 1984, 69:57–64.

    PubMed  CAS  Google Scholar 

  7. Francis GS, Benedict C, Johnstone DE, et al.: Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990, 82:1724–1729.

    PubMed  CAS  Google Scholar 

  8. Francis GS, Siegel RM, Goldsmith SR, et al.: Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med 1985, 103:1–6.

    PubMed  CAS  Google Scholar 

  9. Beutler JJ, Boer WH, Koomans HA, Dorhout Mees EJ: Renal hemodynamic and tubular response to furosemide in man during normal and restricted sodium intake. Nephron 1990, 54:208–213.

    Article  PubMed  CAS  Google Scholar 

  10. Gottlieb SS, Brater DC, Thomas I, et al.: BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 2002, 105:1348–1353.

    Article  PubMed  CAS  Google Scholar 

  11. Vallon V, Muhlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev 2006, 86:901–940.

    Article  PubMed  CAS  Google Scholar 

  12. Kloor D, Kurz J, Fuchs S, et al.: S-adenosylhomocysteine-hydrolase from bovine kidney: enzymatic and binding properties. Kidney Blood Press Res 1996, 19:100–108.

    PubMed  CAS  Google Scholar 

  13. Hansen PB, Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 2003, 285:F590–F599.

    PubMed  CAS  Google Scholar 

  14. Fredholm BB, Ijzerman AP, Jacobson KA, et al.: International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001, 53:527–552.

    PubMed  CAS  Google Scholar 

  15. Yamaguchi S, Umemura S, Tamura K, et al.: Adenosine A1 receptor mRNA in microdissected rat nephron segments. Hypertension 1995, 26:1181–1185.

    PubMed  CAS  Google Scholar 

  16. Jackson EK, Zhu C, Tofovic SP. Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 2002; 283:F41–F51.

    PubMed  CAS  Google Scholar 

  17. Smith JA, Sivaprasadarao A, Munsey TS, et al.: Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol 2001, 61:237–244.

    Article  PubMed  CAS  Google Scholar 

  18. Sun D, Samuelson LC, Yang T, et al.: Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 2001, 98:9983–9988.

    Article  PubMed  CAS  Google Scholar 

  19. Brown R, Ollerstam A, Johnasson B, et al.: Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 2001, 281:R1362–R1367.

    PubMed  CAS  Google Scholar 

  20. Kreisberg MS, Silldorff EP, Pallone TL: Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol 1997, 272:H1231–H1238.

    PubMed  CAS  Google Scholar 

  21. Vitzthum H, Weiss B, Bachleitner W, et al.: Gene expression of adenosine receptors along the nephron. Kidney Int 2004, 65:1180–1190.

    Article  PubMed  CAS  Google Scholar 

  22. Weaver DR, Reppert SM: Adenosine receptor gene expression in rat kidney. Am J Physiol 1992, 263:F991–F995.

    PubMed  CAS  Google Scholar 

  23. Zhou QY, Li C, Olah ME, et al.: Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 1992, 89:7432–7436.

    Article  PubMed  CAS  Google Scholar 

  24. Linden J: Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 1994, 15:298–306.

    Article  PubMed  CAS  Google Scholar 

  25. Dzau VJ: Renal and circulatory mechanisms in congestive heart failure. Kidney Int 1987, 31:1402–1415.

    Article  PubMed  CAS  Google Scholar 

  26. Elkayam U, Mehra A, Cohen G, et al.: Renal circulatory effects of adenosine in patients with chronic heart failure. J Am Coll Cardiol 1998, 32:211–215.

    Article  PubMed  CAS  Google Scholar 

  27. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L: Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 1999, 10:714–720.

    PubMed  CAS  Google Scholar 

  28. Schnackenberg CG, Merz E, Brooks DP: An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats. Br J Pharmacol 2003, 139:1383–1388.

    Article  PubMed  CAS  Google Scholar 

  29. Gottlieb SS, Skettino SL, Wolff A, et al.: Effects of BG9719 (CVT-124), an A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Am Coll Cardiol 2000, 35:56–59.

    Article  PubMed  CAS  Google Scholar 

  30. Givertz MM, Massie BM, Fields TK, et al.: The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with aculte decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 2007, In press.

  31. Weisbord SD, Chen H, Stone RA, et al.: Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol 2006, 17:2871–2877.

    Article  PubMed  CAS  Google Scholar 

  32. Arend LJ, Bakris GL, Burnett JC Jr, et al.: Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 1987, 110:406–411.

    PubMed  CAS  Google Scholar 

  33. Arakawa K, Suzuki H, Naitoh M, et al.: Role of adenosine in the renal responses to contrast medium. Kidney Int 1996, 49:1199–1206.

    Article  PubMed  CAS  Google Scholar 

  34. Erley CM, Duda SH, Rehfuss D, et al.: Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 1999, 14:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  35. Lee HT, Jan M, Bae SC, et al.: A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal Physiol 2006, 290:F1367–1375.

    Article  PubMed  CAS  Google Scholar 

  36. Kochanek PM, Vagni VA, Janesko KL, et al.: Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 2006, 26:565–575.

    Article  PubMed  CAS  Google Scholar 

  37. Lang UE, Lang F, Richter K, et al.: Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice. Behav Brain Res 2003, 145:179–188.

    Article  PubMed  CAS  Google Scholar 

  38. Morrison RR, Teng B, Oldenburg PJ, et al.: Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 2006, 291:H1875–H1882.

    Article  PubMed  CAS  Google Scholar 

  39. Willems L, Reichelt ME, Molina JG, et al.: Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts. Cardiovasc Res 2006, 71:79–87.

    Article  PubMed  CAS  Google Scholar 

  40. Liao Y, Takashima S, Asano Y, et al.: Activation of adenosine A1 receptor attenuatescardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 2003, 93:750–766.

    Article  CAS  Google Scholar 

  41. Kennedy RH, Owings R, Joseph J, et al.: Acute dilatory and negative inotropic effects of homocysteine are inhibited by an adenosine blocker. Clin Exp Pharmacol Physiol 2006, 33:340–344.

    Article  PubMed  CAS  Google Scholar 

  42. Fabritz L, Kirchhof P, Fortmuller L, et al.: Gene dose-dependent atrial arrhythmias, heart block, and brady-cardiomyopathy in mice overexpressing A(3) adenosine receptors. Cardiovasc Res 2004, 62:500–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaram, V., Joseph, J. Role of adenosine antagonism in the cardio-renal syndrome: Pathophysiology and therapeutic potential. Curr Heart Fail Rep 4, 153–157 (2007). https://doi.org/10.1007/s11897-007-0034-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-007-0034-1

Keywords

Navigation