Skip to main content

Advertisement

Log in

Barrier Dysfunction in Eosinophilic Esophagitis

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Compelling evidence over the past decade supports the central role of epithelial barrier dysfunction in the pathophysiology of eosinophilic esophagitis (EoE). The purpose of this review is to summarize the genetic, environmental, and immunologic factors driving epithelial barrier dysfunction, and how this impaired barrier can further promote the inflammatory response in EoE.

Recent Findings

Common environmental exposures, such as detergents, may have a direct impact on the esophageal epithelial barrier. In addition, the effects of IL-13 on barrier dysfunction may be reduced by 17β-estradiol, Vitamin D, and the short chain fatty acids butyrate and propionate, suggesting novel therapeutic targets.

Summary

There are many genetic, environmental, and immunologic factors that contribute to epithelial barrier dysfunction in EoE. This leads to further skewing of the immune response to a “Th2” phenotype, alterations in the esophageal microbiome, and penetration of relevant antigens into the esophageal mucosa, which are central to the pathophysiology of EoE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dobbins JW, Sheahan DG, Behar J. Eosinophilic gastroenteritis with esophageal involvement. Gastroenterology. 1977;72(6):1312–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kerlin P, Jones D, Remedios M, Campbell C. Prevalence of eosinophilic esophagitis in adults with food bolus obstruction of the esophagus. J Clin Gastroenterol. 2007;41(4):356–61. https://doi.org/10.1097/01.mcg.0000225590.08825.77.

    Article  PubMed  Google Scholar 

  3. Kirchner GI, Zuber-Jerger I, Endlicher E, Gelbmann C, Ott C, Ruemmele P, et al. Causes of bolus impaction in the esophagus. Surg Endosc. 2011;25(10):3170–4. https://doi.org/10.1007/s00464-011-1681-6.

    Article  PubMed  Google Scholar 

  4. Diniz LO, Towbin AJ. Causes of esophageal food bolus impaction in the pediatric population. Dig Dis Sci. 2012;57(3):690–3. https://doi.org/10.1007/s10620-011-1911-8.

    Article  PubMed  Google Scholar 

  5. Dellon ES, Liacouras CA, Molina-Infante J, Furuta GT, Spergel JM, Zevit N, et al. Updated International Consensus Diagnostic Criteria for Eosinophilic Esophagitis: Proceedings of the AGREE Conference. Gastroenterology. 2018;155(4):1022-33.e10. https://doi.org/10.1053/j.gastro.2018.07.009.

    Article  PubMed  Google Scholar 

  6. Kelly KJ, Lazenby AJ, Rowe PC, Yardley JH, Perman JA, Sampson HA. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology. 1995;109(5):1503–12. https://doi.org/10.1016/0016-5085(95)90637-1.

    Article  CAS  PubMed  Google Scholar 

  7. Peterson KA, Byrne KR, Vinson LA, Ying J, Boynton KK, Fang JC, et al. Elemental diet induces histologic response in adult eosinophilic esophagitis. Am J Gastroenterol. 2013;108(5):759–66. https://doi.org/10.1038/ajg.2012.468.

    Article  CAS  PubMed  Google Scholar 

  8. Kagalwalla AF, Sentongo TA, Ritz S, Hess T, Nelson SP, Emerick KM, et al. Effect of six-food elimination diet on clinical and histologic outcomes in eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2006;4(9):1097–102. https://doi.org/10.1016/j.cgh.2006.05.026.

    Article  PubMed  Google Scholar 

  9. Molina-Infante J, Arias Á, Alcedo J, Garcia-Romero R, Casabona-Frances S, Prieto-Garcia A, et al. Step-up empiric elimination diet for pediatric and adult eosinophilic esophagitis: The 2–4-6 study. J Allergy Clin Immunol. 2018;141(4):1365–72. https://doi.org/10.1016/j.jaci.2017.08.038.

    Article  PubMed  Google Scholar 

  10. Cookson WO, Ubhi B, Lawrence R, Abecasis GR, Walley AJ, Cox HE, et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet. 2001;27(4):372–3. https://doi.org/10.1038/86867.

    Article  CAS  PubMed  Google Scholar 

  11. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6. https://doi.org/10.1038/ng1767.

    Article  CAS  PubMed  Google Scholar 

  12. Irvine AD. Fleshing out filaggrin phenotypes. J Invest Dermatol. 2007;127(3):504–7. https://doi.org/10.1038/sj.jid.5700695.

    Article  CAS  PubMed  Google Scholar 

  13. Blanchard C, Stucke EM, Burwinkel K, Caldwell JM, Collins MH, Ahrens A, et al. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 2010;184(7):4033–41. https://doi.org/10.4049/jimmunol.0903069.

    Article  CAS  PubMed  Google Scholar 

  14. Katzka DA, Tadi R, Smyrk TC, Katarya E, Sharma A, Geno DM, et al. Effects of topical steroids on tight junction proteins and spongiosis in esophageal epithelia of patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2014;12(11):1824-9.e1. https://doi.org/10.1016/j.cgh.2014.02.039.

    Article  CAS  PubMed  Google Scholar 

  15. Katzka DA, Ravi K, Geno DM, Smyrk TC, Iyer PG, Alexander JA, et al. Endoscopic mucosal impedance measurements correlate with eosinophilia and dilation of intercellular spaces in patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2015;13(7):1242-8.e1. https://doi.org/10.1016/j.cgh.2014.12.032.

    Article  PubMed  Google Scholar 

  16. Vaezi MF, Choksi Y. Mucosal impedance: a new way to diagnose reflux disease and how it could change your practice. Am J Gastroenterol. 2017;112(1):4–7. https://doi.org/10.1038/ajg.2016.513.

    Article  PubMed  Google Scholar 

  17. Patel DA, Higginbotham T, Slaughter JC, Aslam M, Yuksel E, Katzka D, et al. Development and validation of a mucosal impedance contour analysis system to distinguish esophageal disorders. Gastroenterology. 2019;156(6):1617-26.e1. https://doi.org/10.1053/j.gastro.2019.01.253.

    Article  PubMed  Google Scholar 

  18. Sifrim D, Roman S, Savarino E, Bor S, Bredenoord AJ, Castell D, et al. Normal values and regional differences in oesophageal impedance-pH metrics: a consensus analysis of impedance-pH studies from around the world. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-322627.

    Article  PubMed  Google Scholar 

  19. Wallace MB, Fockens P. Probe-based confocal laser endomicroscopy. Gastroenterology. 2009;136(5):1509–13. https://doi.org/10.1053/j.gastro.2009.03.034.

    Article  PubMed  Google Scholar 

  20. Chu CL, Zhen YB, Lv GP, Li CQ, Li Z, Qi QQ, et al. Microalterations of esophagus in patients with non-erosive reflux disease: in-vivo diagnosis by confocal laser endomicroscopy and its relationship with gastroesophageal reflux. Am J Gastroenterol. 2012;107(6):864–74. https://doi.org/10.1038/ajg.2012.44.

    Article  PubMed  Google Scholar 

  21. Kiesslich R, Gossner L, Goetz M, Dahlmann A, Vieth M, Stolte M, et al. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2006;4(8):979–87. https://doi.org/10.1016/j.cgh.2006.05.010.

    Article  PubMed  Google Scholar 

  22. Fritscher-Ravens A, Schuppan D, Ellrichmann M, Schoch S, Röcken C, Brasch J, et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2014;147(5):1012-20.e4. https://doi.org/10.1053/j.gastro.2014.07.046.

    Article  PubMed  Google Scholar 

  23. Blevins CH, Sharma AN, Johnson ML, Geno D, Gupta M, Bharucha AE, et al. Influence of reflux and central obesity on intercellular space diameter of esophageal squamous epithelium. U Eur Gastroenterol J. 2016;4(2):177–83. https://doi.org/10.1177/2050640615598426.

    Article  CAS  Google Scholar 

  24. van Rhijn BD, Verheij J, van den Bergh Weerman MA, Verseijden C, van den Wijngaard RM, de Jonge WJ, et al. Histological response to fluticasone propionate in patients with eosinophilic esophagitis is associated with improved functional esophageal mucosal integrity. Am J Gastroenterol. 2015;110(9):1289–97. https://doi.org/10.1038/ajg.2015.247.

    Article  CAS  PubMed  Google Scholar 

  25. Wu L, Oshima T, Li M, Tomita T, Fukui H, Watari J, et al. Filaggrin and tight junction proteins are crucial for IL-13-mediated esophageal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 2018;315(3):G341–50. https://doi.org/10.1152/ajpgi.00404.2017.

    Article  CAS  PubMed  Google Scholar 

  26. Simon D, Page B, Vogel M, Bussmann C, Blanchard C, Straumann A, et al. Evidence of an abnormal epithelial barrier in active, untreated and corticosteroid-treated eosinophilic esophagitis. Allergy. 2018;73(1):239–47. https://doi.org/10.1111/all.13244.

    Article  CAS  PubMed  Google Scholar 

  27. Masterson JC, Biette KA, Hammer JA, Nguyen N, Capocelli KE, Saeedi BJ, et al. Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. J Clin Invest. 2019;129(8):3224–35. https://doi.org/10.1172/jci126744.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sherrill JD, Kc K, Wu D, Djukic Z, Caldwell JM, Stucke EM, et al. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol. 2014;7(3):718–29. https://doi.org/10.1038/mi.2013.90.

    Article  CAS  PubMed  Google Scholar 

  29. de Rooij WE, Diks MAP, Warners MJ, Ampting M, van Esch B, Bredenoord AJ. Gene expression and clinical outcomes after dietary treatment for eosinophilic esophagitis: a prospective study. Neurogastroenterol Motil. 2022;34(10):e14367. https://doi.org/10.1111/nmo.14367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Rhijn BD, Weijenborg PW, Verheij J, van den Bergh Weerman MA, Verseijden C, van den Wijngaard RM, et al. Proton pump inhibitors partially restore mucosal integrity in patients with proton pump inhibitor-responsive esophageal eosinophilia but not eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2014;12(11):1815-23.e2. https://doi.org/10.1016/j.cgh.2014.02.037.

    Article  CAS  PubMed  Google Scholar 

  31. Lowry MA, Vaezi MF, Correa H, Higginbotham T, Slaughter JC, Acra S. Mucosal impedance measurements differentiate pediatric patients with active versus inactive eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2018;67(2):198–203. https://doi.org/10.1097/mpg.0000000000001943.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alexander JA, Ravi K, Geno DM, Tholen CJ, Higginbotham TC, Wildhorn S, et al. Comparison of mucosal impedance measurements throughout the esophagus and mucosal eosinophil counts in endoscopic biopsy specimens in eosinophilic esophagitis. Gastrointest Endosc. 2019;89(4):693-700.e1. https://doi.org/10.1016/j.gie.2018.08.031.

    Article  PubMed  Google Scholar 

  33. Rothenberg ME, Spergel JM, Sherrill JD, Annaiah K, Martin LJ, Cianferoni A, et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet. 2010;42(4):289–91. https://doi.org/10.1038/ng.547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kottyan LC, Davis BP, Sherrill JD, Liu K, Rochman M, Kaufman K, et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat Genet. 2014;46(8):895–900. https://doi.org/10.1038/ng.3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blanchard C, Wang N, Stringer KF, Mishra A, Fulkerson PC, Abonia JP, et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J Clin Invest. 2006;116(2):536–47. https://doi.org/10.1172/jci26679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kottyan LC, Rothenberg ME. Genetics of eosinophilic esophagitis. Mucosal Immunol. 2017;10(3):580–8. https://doi.org/10.1038/mi.2017.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kottyan LC, Parameswaran S, Weirauch MT, Rothenberg ME, Martin LJ. The genetic etiology of eosinophilic esophagitis. J Allergy Clin Immunol. 2020;145(1):9–15. https://doi.org/10.1016/j.jaci.2019.11.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalb B, Marenholz I, Jeanrenaud A, Meixner L, Arnau-Soler A, Rosillo-Salazar OD, et al. Filaggrin loss-of-function mutations are associated with persistence of egg and milk allergy. J Allergy Clin Immunol. 2022;150(5):1125–34. https://doi.org/10.1016/j.jaci.2022.05.018. This study demonstrates that FLG loss-of-function mutations are a risk factor for food allergy independent of eczema.

    Article  CAS  PubMed  Google Scholar 

  39. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127(3):661–7. https://doi.org/10.1016/j.jaci.2011.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rice NE, Patel BD, Lang IA, Kumari M, Frayling TM, Murray A, et al. Filaggrin gene mutations are associated with asthma and eczema in later life. J Allergy Clin Immunol. 2008;122(4):834–6. https://doi.org/10.1016/j.jaci.2008.07.027.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matoso A, Mukkada VA, Lu S, Monahan R, Cleveland K, Noble L, et al. Expression microarray analysis identifies novel epithelial-derived protein markers in eosinophilic esophagitis. Mod Pathol. 2013;26(5):665–76. https://doi.org/10.1038/modpathol.2013.41.

    Article  CAS  PubMed  Google Scholar 

  42. Blanchard C, Mingler MK, Vicario M, Abonia JP, Wu YY, Lu TX, et al. IL-13 involvement in eosinophilic esophagitis: transcriptome analysis and reversibility with glucocorticoids. J Allergy Clin Immunol. 2007;120(6):1292–300. https://doi.org/10.1016/j.jaci.2007.10.024.

    Article  CAS  PubMed  Google Scholar 

  43. Noti M, Wojno ED, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med. 2013;19(8):1005–13. https://doi.org/10.1038/nm.3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sherrill JD, Gao PS, Stucke EM, Blanchard C, Collins MH, Putnam PE, et al. Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J Allergy Clin Immunol. 2010;126(1):160-5.e3. https://doi.org/10.1016/j.jaci.2010.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of Type 2 immunity. Immunity. 2015;43(1):29–40. https://doi.org/10.1016/j.immuni.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  46. Chandramouleeswaran PM, Shen D, Lee AJ, Benitez A, Dods K, Gambanga F, et al. Preferential secretion of Thymic stromal Lymphopoietin (TSLP) by terminally differentiated esophageal epithelial cells: relevance to eosinophilic esophagitis (EoE). PLoS ONE. 2016;11(3):e0150968. https://doi.org/10.1371/journal.pone.0150968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramasamy A, Kuokkanen M, Vedantam S, Gajdos ZK, Couto Alves A, Lyon HN, et al. Genome-wide association studies of asthma in population-based cohorts confirm known and suggested loci and identify an additional association near HLA. PLoS One. 2012;7(9):e44008. https://doi.org/10.1371/journal.pone.0044008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21. https://doi.org/10.1056/NEJMoa0906312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin LJ, He H, Collins MH, Abonia JP, Biagini Myers JM, Eby M, et al. Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. J Allergy Clin Immunol. 2018;141(5):1690–8. https://doi.org/10.1016/j.jaci.2017.09.046.

    Article  PubMed  Google Scholar 

  50. Judd LM, Heine RG, Menheniott TR, Buzzelli J, O’Brien-Simpson N, Pavlic D, et al. Elevated IL-33 expression is associated with pediatric eosinophilic esophagitis, and exogenous IL-33 promotes eosinophilic esophagitis development in mice. Am J Physiol Gastrointest Liver Physiol. 2016;310(1):G13-25. https://doi.org/10.1152/ajpgi.00290.2015.

    Article  CAS  PubMed  Google Scholar 

  51. Travers J, Rochman M, Caldwell JM, Besse JA, Miracle CE, Rothenberg ME. IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci Rep. 2017;7(1):17563. https://doi.org/10.1038/s41598-017-17541-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marwaha AK, Laxer R, Liang M, Muise AM, Eiwegger T. A chromosomal duplication encompassing Interleukin-33 causes a novel hyper IgE phenotype characterized by eosinophilic esophagitis and generalized autoimmunity. Gastroenterology. 2022;163(2):510-3.e3. https://doi.org/10.1053/j.gastro.2022.04.026.

    Article  CAS  PubMed  Google Scholar 

  53. Sleiman PM, Wang ML, Cianferoni A, Aceves S, Gonsalves N, Nadeau K, et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 2014;5:5593. https://doi.org/10.1038/ncomms6593.

    Article  PubMed  Google Scholar 

  54. Davis BP, Stucke EM, Khorki ME, Litosh VA, Rymer JK, Rochman M, et al. Eosinophilic esophagitis-linked calpain 14 is an IL-13-induced protease that mediates esophageal epithelial barrier impairment. JCI Insight. 2016;1(4):e86355. https://doi.org/10.1172/jci.insight.86355.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Litosh VA, Rochman M, Rymer JK, Porollo A, Kottyan LC, Rothenberg ME. Calpain-14 and its association with eosinophilic esophagitis. J Allergy Clin Immunol. 2017;139(6):1762-71.e7. https://doi.org/10.1016/j.jaci.2016.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alexander ES, Martin LJ, Collins MH, Kottyan LC, Sucharew H, He H, et al. Twin and family studies reveal strong environmental and weaker genetic cues explaining heritability of eosinophilic esophagitis. J Allergy Clin Immunol. 2014;134(5):1084-92.e1. https://doi.org/10.1016/j.jaci.2014.07.021.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jensen ET, Kuhl JT, Martin LJ, Rothenberg ME, Dellon ES. Prenatal, intrapartum, and postnatal factors are associated with pediatric eosinophilic esophagitis. J Allergy Clin Immunol. 2018;141(1):214–22. https://doi.org/10.1016/j.jaci.2017.05.018.

    Article  PubMed  Google Scholar 

  58. Kurt G, Svane HML, Erichsen R, Heide-Jørgensen U, Sørensen HT, Dellon ES, et al. Prenatal, intrapartum, and neonatal factors increase the risk of eosinophilic esophagitis. Am J Gastroenterol. 2023. https://doi.org/10.14309/ajg.0000000000002303. This study identified environmental factors, including prenatal, intrapartum, and neonatal factors, associated with the development of EoE.

    Article  PubMed  Google Scholar 

  59. Dellon ES, Hirano I. Epidemiology and natural history of eosinophilic esophagitis. Gastroenterology. 2018;154(2):319-32.e3. https://doi.org/10.1053/j.gastro.2017.06.067.

    Article  PubMed  Google Scholar 

  60. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739–51. https://doi.org/10.1038/s41577-021-00538-7.

    Article  CAS  PubMed  Google Scholar 

  61. Singer MM, Tjeerdema RS. Fate and effects of the surfactant sodium dodecyl sulfate. Rev Environ Contam Toxicol. 1993;133:95–149. https://doi.org/10.1007/978-1-4613-9529-4_3.

    Article  CAS  PubMed  Google Scholar 

  62. Xian M, Wawrzyniak P, Rückert B, Duan S, Meng Y, Sokolowska M, et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138(3):890-3.e9. https://doi.org/10.1016/j.jaci.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  63. Wang M, Tan G, Eljaszewicz A, Meng Y, Wawrzyniak P, Acharya S, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892–903. https://doi.org/10.1016/j.jaci.2018.11.016.

    Article  CAS  PubMed  Google Scholar 

  64. Doyle AD, Masuda MY, Pyon GC, Luo H, Putikova A, LeSuer WE, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2023;78(1):192–201. https://doi.org/10.1111/all.15457. This study assessed the harmful effect of SDS exposure to eosophageal muscosa via in vitro as well as in vivo mouse models and found that detergents may be a key environmental trigger in EoE pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  65. Hosoki K, Boldogh I, Sur S. Innate responses to pollen allergens. Curr Opin Allergy Clin Immunol. 2015;15(1):79–88. https://doi.org/10.1097/aci.0000000000000136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vinhas R, Cortes L, Cardoso I, Mendes VM, Manadas B, Todo-Bom A, et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy. 2011;66(8):1088–98. https://doi.org/10.1111/j.1398-9995.2011.02598.x.

    Article  CAS  PubMed  Google Scholar 

  67. Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy. 2001;31(2):279–94. https://doi.org/10.1046/j.1365-2222.2001.00970.x.

    Article  CAS  PubMed  Google Scholar 

  68. Ravi A, Marietta EV, Geno DM, Alexander JA, Murray JA, Katzka DA. Penetration of the esophageal epithelium by dust mite antigen in patients with eosinophilic esophagitis. Gastroenterology. 2019;157(1):255–6. https://doi.org/10.1053/j.gastro.2019.02.042.

    Article  PubMed  Google Scholar 

  69. Armentia A, Martín-Armentia S, Álvarez-Nogal R, Armentia BM, Gayoso MJ, Fernández-González D. Germination of pollen grains in the oesophagus of individuals with eosinophilic oesophagitis. Clin Exp Allergy. 2019;49(4):471–3. https://doi.org/10.1111/cea.13312.

    Article  CAS  PubMed  Google Scholar 

  70. Caraballo JC, Yshii C, Westphal W, Moninger T, Comellas AP. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology. 2011;16(2):340–9. https://doi.org/10.1111/j.1440-1843.2010.01910.x.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao R, Guo Z, Zhang R, Deng C, Xu J, Dong W, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation. J Appl Toxicol. 2018;38(5):678–87. https://doi.org/10.1002/jat.3573.

    Article  CAS  PubMed  Google Scholar 

  72. Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190(7):3757–63. https://doi.org/10.4049/jimmunol.1201165.

    Article  CAS  PubMed  Google Scholar 

  73. Muir AB, Wang JX, Nakagawa H. Epithelial-stromal crosstalk and fibrosis in eosinophilic esophagitis. J Gastroenterol. 2019;54(1):10–8. https://doi.org/10.1007/s00535-018-1498-3.

    Article  CAS  PubMed  Google Scholar 

  74. Gann PH, Deaton RJ, McMahon N, Collins MH, Dellon ES, Hirano I, et al. An anti-IL-13 antibody reverses epithelial-mesenchymal transition biomarkers in eosinophilic esophagitis: Phase 2 trial results. J Allergy Clin Immunol. 2020;146(2):367-76.e3. https://doi.org/10.1016/j.jaci.2020.03.045. This phase 2 clinical trial demonstrates that pharmacologic inhibition of IL-13 (anti‒IL-13 mAb) could be a potential therapy for fibrostenosis, the most serious eosinophilic esophagitis (EoE) complication.

    Article  CAS  PubMed  Google Scholar 

  75. Wheeler JC, Vanoni S, Zeng C, Waggoner L, Yang Y, Wu D, et al. 17β-Estradiol protects the esophageal epithelium from IL-13-induced barrier dysfunction and remodeling. J Allergy Clin Immunol. 2019;143(6):2131–46. https://doi.org/10.1016/j.jaci.2018.10.070.

    Article  CAS  PubMed  Google Scholar 

  76. Brusilovsky M, Rochman M, Shoda T, Kotliar M, Caldwell JM, Mack LE, et al. Vitamin D receptor and STAT6 interactome governs oesophageal epithelial barrier responses to IL-13 signalling. Gut. 2023;72(5):834–45. https://doi.org/10.1136/gutjnl-2022-327276.

    Article  CAS  PubMed  Google Scholar 

  77. Kleuskens MTA, Haasnoot ML, Herpers BM, Ampting M, Bredenoord AJ, Garssen J, et al. Butyrate and propionate restore interleukin 13-compromised esophageal epithelial barrier function. Allergy. 2022;77(5):1510–21. https://doi.org/10.1111/all.15069.

    Article  CAS  PubMed  Google Scholar 

  78. Aceves SS, Newbury RO, Dohil R, Bastian JF, Broide DH. Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol. 2007;119(1):206–12. https://doi.org/10.1016/j.jaci.2006.10.016.

    Article  CAS  PubMed  Google Scholar 

  79. Aceves SS, Chen D, Newbury RO, Dohil R, Bastian JF, Broide DH. Mast cells infiltrate the esophageal smooth muscle in patients with eosinophilic esophagitis, express TGF-β1, and increase esophageal smooth muscle contraction. J Allergy Clin Immunol. 2010;126(6):1198-204.e4. https://doi.org/10.1016/j.jaci.2010.08.050.

    Article  CAS  PubMed  Google Scholar 

  80. Nguyen N, Fernando SD, Biette KA, Hammer JA, Capocelli KE, Kitzenberg DA, et al. TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Mucosal Immunol. 2018;11(2):415–26. https://doi.org/10.1038/mi.2017.72.

    Article  CAS  PubMed  Google Scholar 

  81. Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, et al. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol. 2023;8(79):eabp9940. https://doi.org/10.1126/sciimmunol.abp9940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salamon P, Shoham NG, Puxeddu I, Paitan Y, Levi-Schaffer F, Mekori YA. Human mast cells release oncostatin M on contact with activated T cells: possible biologic relevance. J Allergy Clin Immunol. 2008;121(2):448-55.e5. https://doi.org/10.1016/j.jaci.2007.08.054.

    Article  CAS  PubMed  Google Scholar 

  83. Suda T, Chida K, Todate A, Ide K, Asada K, Nakamura Y, et al. Oncostatin M production by human dendritic cells in response to bacterial products. Cytokine. 2002;17(6):335–40. https://doi.org/10.1006/cyto.2002.1023.

    Article  CAS  PubMed  Google Scholar 

  84. Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M in hematopoietic organs. Dev Dyn. 2002;225(3):327–31. https://doi.org/10.1002/dvdy.10156.

    Article  CAS  PubMed  Google Scholar 

  85. Pothoven KL, Norton JE, Hulse KE, Suh LA, Carter RG, Rocci E, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol. 2015;136(3):737-46.e4. https://doi.org/10.1016/j.jaci.2015.01.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kleuskens MTA, Bek MK, Al Halabi Y, Blokhuis BRJ, Diks MAP, Haasnoot ML, et al. Mast cells disrupt the function of the esophageal epithelial barrier. Mucosal Immunol. 2023. https://doi.org/10.1016/j.mucimm.2023.06.001.

    Article  PubMed  Google Scholar 

  87. Straumann A, Conus S, Grzonka P, Kita H, Kephart G, Bussmann C, et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut. 2010;59(1):21–30. https://doi.org/10.1136/gut.2009.178558.

    Article  CAS  PubMed  Google Scholar 

  88. Assa’ad AH, Gupta SK, Collins MH, Thomson M, Heath AT, Smith DA, et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology. 2011;141(5):1593–604. https://doi.org/10.1053/j.gastro.2011.07.044.

    Article  CAS  PubMed  Google Scholar 

  89. Spergel JM, Rothenberg ME, Collins MH, Furuta GT, Markowitz JE, Fuchs G 3rd, et al. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2012;129(2):456–63. https://doi.org/10.1016/j.jaci.2011.11.044. (63.e1-3).

    Article  CAS  PubMed  Google Scholar 

  90. Benitez AJ, Hoffmann C, Muir AB, Dods KK, Spergel JM, Bushman FD, et al. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3:23. https://doi.org/10.1186/s40168-015-0085-6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Harris JK, Fang R, Wagner BD, Choe HN, Kelly CJ, Schroeder S, et al. Esophageal microbiome in eosinophilic esophagitis. PLoS ONE. 2015;10(5):e0128346. https://doi.org/10.1371/journal.pone.0128346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Norder Grusell E, Dahlén G, Ruth M, Bergquist H, Bove M. The cultivable bacterial flora of the esophagus in subjects with esophagitis. Scand J Gastroenterol. 2018;53(6):650–6. https://doi.org/10.1080/00365521.2018.1457712.

    Article  PubMed  Google Scholar 

  93. Massimino L, Barchi A, Mandarino FV, Spanò S, Lamparelli LA, Vespa E, et al. A multi-omic analysis reveals the esophageal dysbiosis as the predominant trait of eosinophilic esophagitis. J Transl Med. 2023;21(1):46. https://doi.org/10.1186/s12967-023-03898-x. This study employed advanced bioinformatics and reanalyzed RNA-seq data of 18 different studies on EoE. This approach identified new EoE-specific molecular markers and also revealed microbiota dysbiosis as a predominant characteristic of EoE pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ravi A, Marietta EV, Alexander JA, Murray JA, Katzka DA (2023) H influenza LPS colocalization with Toll-like receptor 4 in eosinophilic esophagitis. JACI Global 2(4):100151

  95. Ravi A, Marietta EV, Alexander JA, Peterson K, Lavey C, Geno DM, et al. Mucosal penetration and clearance of gluten and milk antigens in eosinophilic oesophagitis. Aliment Pharmacol Ther. 2021;53(3):410–7. https://doi.org/10.1111/apt.16180.

  96. Medernach JG, Li RC, Zhao XY, Yin B, Noonan EA, Etter EF, et al. Immunoglobulin G4 in eosinophilic esophagitis: Immune complex formation and correlation with disease activity. Allergy. 2023. https://doi.org/10.1111/all.15826. These data demonstrate that IgG4 and major cow's milk proteins are forming immune complexes in the esophageal tissue of patients with active EoE.

Download references

Funding

This work was funded by the NIH through the following grants: 1R01AI175232 (ECM).

Author information

Authors and Affiliations

Authors

Contributions

ECM, RS and DK served as the primary authors. RS prepared figures 1 and 2. All authors reviewed the manuscript and approved the final draft submitted.

Corresponding author

Correspondence to Emily C. McGowan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Potential Competing Interests

ECM receives grant support from the NIH/NIAID and consulting fees from Regeneron. DAK received an honorarium from Sanofi and Medtronic.

Human and Animal Rights and Informed Consent

This article does not present any novel data on studies with human or animal subjects performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGowan, E.C., Singh, R. & Katzka, D.A. Barrier Dysfunction in Eosinophilic Esophagitis. Curr Gastroenterol Rep 25, 380–389 (2023). https://doi.org/10.1007/s11894-023-00904-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-023-00904-6

Keywords

Navigation