Skip to main content

Advertisement

Log in

Functional Dyspepsia and Food: Immune Overlap with Food Sensitivity Disorders

  • Stomach and Duodenum (J Pisegna and J Benhammou, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Functional dyspepsia (FD) is a chronic functional gastrointestinal disorder characterised by upper gastrointestinal symptoms. Here, we aimed to examine the evidence for immune responses to food in FD and overlap with food hypersensitivity conditions.

Recent Findings

A feature of FD in a subset of patients is an increase in mucosal eosinophils, mast cells, intraepithelial cytotoxic T cells and systemic gut-homing T cells in the duodenum, suggesting that immune dysfunction is characteristic of this disease. Rates of self-reported non-celiac wheat/gluten sensitivity (NCW/GS) are higher in FD patients. FD patients commonly report worsening symptoms following consumption of wheat, fermentable oligosaccharides, disaccharides, monosaccharides, or polyols (FODMAPs), high-fat foods and spicy foods containing capsaicin. Particularly, wheat proteins and fructan in wheat may drive symptoms.

Summary

Immune mechanisms that drive responses to food in FD are still poorly characterised but share key effector cells to common food hypersensitivities including non-IgE–mediated food allergy and eosinophilic oesophagitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aziz I, Palsson OS, Törnblom H, Sperber AD, Whitehead WE, Simrén M. Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet Gastroenterol Hepatol. 2018;3(4):252–62.

    PubMed  Google Scholar 

  2. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology. 2016;150(6):1262–1279.e2.

    Google Scholar 

  3. Enck P, Azpiroz F, Boeckxstaens G, Elsenbruch S, Feinle-Bisset C, Holtmann G, et al. Functional dyspepsia. Nat Rev Dis Primers. 2017;3:17081.

    PubMed  Google Scholar 

  4. Du LJ, et al. Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol. 2016;22(12):3486–95.

    PubMed  PubMed Central  Google Scholar 

  5. Potter MDE, Wood NK, Walker MM, Jones MP, Talley NJ. Proton pump inhibitors and suppression of duodenal eosinophilia in functional dyspepsia. Gut. 2019;68(7):1339–40.

    PubMed  Google Scholar 

  6. Zala AV, Walker MM, Talley NJ. Emerging drugs for functional dyspepsia. Expert Opin Emerg Drugs. 2015;20(2):221–33.

    CAS  PubMed  Google Scholar 

  7. Ford AC, Luthra P, Tack J, Boeckxstaens GE, Moayyedi P, Talley NJ. Efficacy of psychotropic drugs in functional dyspepsia: systematic review and meta-analysis. Gut. 2017;66(3):411–20.

    CAS  PubMed  Google Scholar 

  8. Talley NJ, Locke GR, Saito YA, Almazar AE, Bouras EP, Howden CW, et al. Effect of amitriptyline and escitalopram on functional dyspepsia: a multicenter. Randomized Controlled Study Gastroenterol. 2015;149(2):340–9 e2.

    CAS  Google Scholar 

  9. Pesce M, Cargiolli M, Cassarano S, Polese B, Conno BD, Aurino L, et al. Diet and functional dyspepsia: clinical correlates and therapeutic perspectives. World J Gastroenterol. 2020;26(5):456–65.

    PubMed  PubMed Central  Google Scholar 

  10. Koloski N, et al. Population based study: atopy and autoimmune diseases are associated with functional dyspepsia and irritable bowel syndrome, independent of psychological distress. Aliment Pharmacol Ther. 2019;49(5):546–55 Large population study demonstrates an epidemiological link between food allergy and functional dyspepsia.

    PubMed  Google Scholar 

  11. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Commins SP. Mechanisms of oral tolerance. Pediatr Clin N Am. 2015;62(6):1523–9.

    Google Scholar 

  13. Santos-Hernández M, Miralles B, Amigo L, Recio I. Intestinal signaling of proteins and digestion-derived products relevant to satiety. J Agric Food Chem. 2018;66(39):10123–31.

    PubMed  Google Scholar 

  14. Vickery BP, Scurlock AM, Jones SM, Burks AW. Mechanisms of immune tolerance relevant to food allergy. J Allergy Clin Immunol. 2011;127(3):576–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Akkerdaas J, Totis M, Barnett B, Bell E, Davis T, Edrington T, et al. Protease resistance of food proteins: a mixed picture for predicting allergenicity but a useful tool for assessing exposure. Clin transl Allergy. 2018;8:30–0.

  16. Ortolani C, Pastorello EA. Food allergies and food intolerances. Best Pract Res Clin Gastroenterol. 2006;20(3):467–83.

    CAS  PubMed  Google Scholar 

  17. Staudacher HM, Irving PM, Lomer MCE, Whelan K. Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nat Rev Gastroenterol Hepatol. 2014;11(4):256–66.

    CAS  PubMed  Google Scholar 

  18. Fritscher-Ravens A, et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2014;147(5):1012–20.e4.

    PubMed  Google Scholar 

  19. Potter M, et al. Incidence and prevalence of self-reported non-coeliac wheat sensitivity and gluten avoidance in Australia. Med J Aust. 2020;212(3):126–31 Study evaluating the widespread practice of gluten avoidance and prevalence of self-reported wheat sensitivity and the links to dyspepsia.

    PubMed  Google Scholar 

  20. Duncanson K, et al. The alignment of dietary intake and symptom-reporting capture periods in studies assessing associations between food and fnctional gastrointestinal disorder symptoms: a systematic review. Nutrients. 2019:11(11).

  21. Tan VP. The low-FODMAP diet in the management of functional dyspepsia in East and Southeast Asia. J Gastroenterol Hepatol. 2017;32(Suppl 1):46–52 A comprehensive review of dietary management of functional dyspepsia.

    PubMed  Google Scholar 

  22. Skodje GI, et al. Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology. 2018;154(3):529–539.e2 A randomized, double-blind, placebo-controlled crossover study demonstrating that fructans may drives symptoms of non-celiac wheat sensitivity.

    CAS  PubMed  Google Scholar 

  23. Burns G, et al. Evidence for local and systemic immune activation in functional dyspepsia and the irritable bowel syndrome: a systematic review. Am J Gastroenterol. 2019;114(3):429–36 A comprehensive review of systemic and mucosal immune involvement in functional dyspepsia.

    PubMed  Google Scholar 

  24. Ozen A, Gulcan EM, Ercan Saricoban H, Ozkan F, Cengizlier R. Food protein-induced non-immunoglobulin E-mediated allergic colitis in infants and older children: What cytokines are involved? Int Arch Allergy Immunol. 2015;168(1):61–8.

    CAS  PubMed  Google Scholar 

  25. Talley NJ, Walker MM, Aro P, Ronkainen J, Storskrubb T, Hindley LA, et al. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study. Clin Gastroenterol Hepatol. 2007;5(10):1175–83.

    PubMed  Google Scholar 

  26. Du L, et al. Increased duodenal eosinophil degranulation in patients with functional dyspepsia: a prospective study. Nat Sci Rep. 2016;6:34305.

    CAS  Google Scholar 

  27. Walker MM, et al. Duodenal mastocytosis, eosinophilia and intraepithelial lymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther. 2009;29(7):765–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Li X, Ge W, Huang J, Li G, Cong Y, et al. Quantitative evaluation of duodenal eosinophils and mast cells in adult patients with functional dyspepsia. Ann Diagn Pathol. 2015;19(2):50–6.

    PubMed  Google Scholar 

  29. Walker MM, Aggarwal KR, Shim LSE, Bassan M, Kalantar JS, Weltman MD, et al. Duodenal eosinophilia and early satiety in functional dyspepsia: confirmation of a positive association in an Australian cohort. J Gastroenterol Hepatol (Australia). 2014;29(3):474–9.

    Google Scholar 

  30. Walker MM, et al. Implications of eosinophilia in the normal duodenal biopsy – an association with allergy and functional dyspepsia. Aliment Pharmacol Ther. 2010;31(11):1229–36.

    CAS  PubMed  Google Scholar 

  31. Vanheel H, Vicario M, Boesmans W, Vanuytsel T, Salvo-Romero E, Tack J, et al. Activation of eosinophils and mast cells in functional dyspepsia: an ultrastructural evaluation. Sci Rep. 2018;8(1):5383–3.

  32. Furuta GT, Nieuwenhuis EES, Karhausen J, Gleich G, Blumberg RS, Lee JJ, et al. Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am J Physiol Gastrointest Liver Physiol. 2005;289(5):G890–7.

    CAS  PubMed  Google Scholar 

  33. Pegorier S, et al. Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J Immunol. 2006;177(7):4861–9.

    CAS  PubMed  Google Scholar 

  34. Brottman GM, Regelmann WE, Slungaard A, Wangensteen OD. Effect of eosinophil peroxidase on airway epithelial permeability in the guinea pig. Pediatr Pulmonol. 1996;21(3):159–66.

    CAS  PubMed  Google Scholar 

  35. Jacoby DB, Gleich GJ, Fryer AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest. 1993;91(4):1314–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee MJ, Jung HK, Lee KE, Mun YC, Park S. Degranulated eosinophils contain more fine nerve fibers in the duodenal mucosa of patients with functional dyspepsia. J Neurogastroenterol Motil. 2019;25(2):212–21.

    PubMed  PubMed Central  Google Scholar 

  37. Hall W, Buckley M, Crotty P, O’Morain CA. Gastric mucosal mast cells are increased in Helicobacter pylori-negative functional dyspepsia. Clin Gastroenterol Hepatol. 2003;1(5):363–9.

    PubMed  Google Scholar 

  38. Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, et al. Physiological roles of mast cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol. 2019;179(4):247–61.

    CAS  PubMed  Google Scholar 

  39. Friesen C, Singh M, Singh V, Schurman JV. A cross-sectional study of nausea in functional abdominal pain: relation to mucosal mast cells and psychological functioning. BMC Gastroenterol. 2020;20(1):144–4.

  40. Tordesillas L, Berin MC. Mechanisms of oral tolerance. Clin Rev Allergy Immunol. 2018;55(2):107–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nejad AS, MacGlashan DW Jr. Dependence of optimal histamine release on cell surface IgE density on human basophils: nature of the stimulus. Int Arch Allergy Immunol. 2018:1–11.

  43. Cheung CKY, Lan LL, Kyaw M, Mak ADP, Chan A, Chan Y, et al. Up-regulation of transient receptor potential vanilloid (TRPV) and down-regulation of brain-derived neurotrophic factor (BDNF) expression in patients with functional dyspepsia (FD). Neurogastroenterol Motil. 2018;30(2):e13176.

    Google Scholar 

  44. Kindt S, et al. Immune dysfunction in patients with functional gastrointestinal disorders. Neurogastroenterol Motil. 2009;21(4):389–98.

    CAS  PubMed  Google Scholar 

  45. Connors L, et al. Non-IgE-mediated food hypersensitivity. Allergy, Asthma Clin Immunol. 2018;14(2):56.

    Google Scholar 

  46. Ruffner MA, Spergel JM. Non-IgE-mediated food allergy syndromes. An Allergy Asthma Immunol Off Public Am Col Allergy Asthma Immunol. 2016;117(5):452–4.

    Google Scholar 

  47. Hill DA, Spergel JM. The immunologic mechanisms of eosinophilic esophagitis. Curr Allergy Asthma Rep. 2016;16(2):9–9.

    PubMed  PubMed Central  Google Scholar 

  48. Kim EH, Burks W. Immunological basis of food allergy (IgE-mediated, non-IgE-mediated, and tolerance). Chem Immunol Allergy. 2015;101:8–17.

    CAS  PubMed  Google Scholar 

  49. Hill DJ, Hosking CS, Zhie CY, Leung R, Baratwidjaja K, Iikura Y, et al. The frequency of food allergy in Australia and Asia. Environ Toxicol Pharmacol. 1997;4(1):101–10.

    CAS  PubMed  Google Scholar 

  50. Chung HL, Hwang JB, Park JJ, Kim SG. Expression of transforming growth factor beta1, transforming growth factor type I and II receptors, and TNF-alpha in the mucosa of the small intestine in infants with food protein-induced enterocolitis syndrome. J Allergy Clin Immunol. 2002;109(1):150–4.

    CAS  PubMed  Google Scholar 

  51. Kagnoff MF. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest. 2007;117(1):41–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Parzanese I, Qehajaj D, Patrinicola F, Aralica M, Chiriva-Internati M, Stifter S, et al. Celiac disease: from pathophysiology to treatment. World J Gastrointest Pathophysiol. 2017;8(2):27–38.

    PubMed  PubMed Central  Google Scholar 

  53. Zuo XL, Li YQ, Li WJ, Guo YT, Lu XF, Li JM, et al. Alterations of food antigen-specific serum immunoglobulins G and E antibodies in patients with irritable bowel syndrome and functional dyspepsia. Clin Exp Allergy. 2007;37(6):823–30.

    CAS  PubMed  Google Scholar 

  54. von Wulffen M, Talley NJ, Hammer J, McMaster J, Rich G, Shah A, et al. Overlap of irritable bowel syndrome and functional dyspepsia in the clinical setting: prevalence and risk factors. Dig Dis Sci. 2019;64(2):480–6.

    Google Scholar 

  55. Fritscher-Ravens A, et al. Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E. Gastroenterology. 2019;157(1):109–118.e5 Identification of non-IgE food sensitivity as a potential factor in the irritable bowel syndrome.

    PubMed  Google Scholar 

  56. Volta U, et al. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med. 2014;12:85–5.

  57. Potter MDE, et al. Wheat intolerance and chronic gastrointestinal symptoms in an Australian population-based study: association between wheat sensitivity, celiac disease and functional gastrointestinal disorders. Am J Gastroenterol. 2018;113(7):1036–44 A population based study examining the associations between functional GI disorders and food sensitivity.

    PubMed  Google Scholar 

  58. Carroccio A, Mansueto P, DʼAlcamo A, Iacono G. Non-celiac wheat sensitivity as an allergic condition: personal experience and narrative review. Am J Gastroenterol. 2013;108(12):1845–52 quiz 1853.

    PubMed  Google Scholar 

  59. Carroccio A, et al. Duodenal and rectal mucosa inflammation in patients with non-celiac wheat sensitivity. Clin Gastroenterol Hepatol. 2019;17(4):682–690.e3 Study demonstrating overlap between immune features, including eosinophilia of FGIDs and non-celiac wheat sensitivity.

    PubMed  Google Scholar 

  60. Sapone A, Lammers KM, Casolaro V, Cammarota M, Giuliano MT, de Rosa M, et al. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med. 2011;9(1):23.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5(1):a011247–7.

  62. Capannolo A, Necozione S, Gabrieli D, Ciccone F, Sollima L, Melchiorri L, et al. Duodenal lymphocytosis in functional dyspepsia. Arab J Gastroenterol. 2019;20(2):91–4.

    PubMed  Google Scholar 

  63. Palova-Jelinkova L, et al. Pepsin digest of wheat gliadin fraction increases production of IL-1beta via TLR4/MyD88/TRIF/MAPK/NF-kappaB signaling pathway and an NLRP3 inflammasome activation. PLoS One. 2013;8(4):e62426.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghasiyari H, et al. Diverse profiles of toll-like receptors 2, 4, 7, and 9 mRNA in peripheral blood and biopsy specimens of patients with celiac disease. J Immunol Res. 2018;2018:7587095.

    PubMed  PubMed Central  Google Scholar 

  65. Keely S, Talley NJ. In the ZOne: how impedance facilitates progress in functional dyspepsia research. Dig Dis Sci. 2019;64(11):3027–9.

    PubMed  Google Scholar 

  66. Komori K, Ihara E, Minoda Y, Ogino H, Sasaki T, Fujiwara M, et al. The altered mucosal barrier function in the duodenum plays a role in the pathogenesis of functional dyspepsia. Dig Dis Sci. 2019;64(11):3228–39.

    CAS  PubMed  Google Scholar 

  67. Vanheel H, Vicario M, Vanuytsel T, van Oudenhove L, Martinez C, Keita ÅV, et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut. 2014;63(2):262–71.

    CAS  PubMed  Google Scholar 

  68. Elli L, Tomba C, Branchi F, Roncoroni L, Lombardo V, Bardella M, et al. Evidence for the presence of non-celiac gluten sensitivity in patients with functional gastrointestinal symptoms: results from a multicenter randomized double-blind placebo-controlled gluten challenge. Nutrients. 2016;8(2):84.

    PubMed  PubMed Central  Google Scholar 

  69. Shahbazkhani B, et al. Prevalence of non-celiac gluten sensitivity in patients with refractory functional dyspepsia: a randomized double-blind placebo controlled trial. Sci Rep. 2020;10(1):2401–1 Study supporting non-celiac gluten sensitivity as a subset disorder of functional dyspepsia.

  70. Catassi C, Alaedini A, Bojarski C, Bonaz B, Bouma G, Carroccio A, et al. The overlapping area of non-celiac gluten sensitivity (NCGS) and wheat-sensitive irritable bowel syndrome (IBS): an update. Nutrients. 2017;9(11):1268.

    PubMed Central  Google Scholar 

  71. Ong DK, Mitchell SB, Barrett JS, Shepherd SJ, Irving PM, Biesiekierski JR, et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J Gastroenterol Hepatol. 2010;25(8):1366–73.

    CAS  PubMed  Google Scholar 

  72. Duncanson KR, et al. Food and functional dyspepsia: a systematic review. J Hum Nutr Diet. 2018;31(3):390–407 Comprehensive systematic review of food triggers associated with functional dyspepsia symptoms.

    CAS  PubMed  Google Scholar 

  73. Orlando A, et al. Improved symptom profiles and minimal inflammation in IBS-D patients undergoing a long-term low-FODMAP diet: a lipidomic perspective. Nutrients. 2020:12(6).

  74. Wilson B, Rossi M, Kanno T, Parkes GC, Anderson S, Mason AJ, et al. β-Galactooligosaccharide in conjunction with low FODMAP diet improves irritable bowel syndrome symptoms but reduces fecal Bifidobacteria. Am J Gastroenterol. 2020;115(6):906–15.

    PubMed  Google Scholar 

  75. Fransen F, et al. β2→1-Fructans modulate the immune system in vivo in a microbiota-dependent and -independent fashion. Front Immunol. 2017;8:154–4.

  76. Fukui A, et al. Higher levels of Streptococcus in upper gastrointestinal mucosa associated with symptoms in patients with functional dyspepsia. Digestion. 2020;101(1):38–45 Study examining the microbiome of functional dyspepsia demonstrates symptom-related microbial changes.

    CAS  PubMed  Google Scholar 

  77. .Zhong L, et al. Dyspepsia and the microbiome: time to focus on the small intestine. Gut. 2017;66(6):1168–9 First report of changes to the microbiome associated with dyspepsia.

    CAS  PubMed  Google Scholar 

  78. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tap J, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology. 2017;152(1):111–123.e8.

    PubMed  Google Scholar 

  80. Nakae H, Tsuda A, Matsuoka T, Mine T, Koga Y. Gastric microbiota in the functional dyspepsia patients treated with probiotic yogurt. BMJ Open Gastroenterol. 2016;3(1):e000109.

    PubMed  PubMed Central  Google Scholar 

  81. Chen C-C, Chen KJ, Kong MS, Chang HJ, Huang JL. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr Allergy Immunol. 2016;27(3):254–62.

    PubMed  Google Scholar 

  82. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62(3):264–9.

    CAS  PubMed  Google Scholar 

  83. Harris JK, Fang R, Wagner BD, Choe HN, Kelly CJ, Schroeder S, et al. Esophageal microbiome in eosinophilic esophagitis. PLoS One. 2015;10(5):e0128346–6.

  84. Nistal E, Caminero A, Herrán AR, Arias L, Vivas S, de Morales JMR, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis. 2012;18(4):649–56.

    PubMed  Google Scholar 

  85. Caminero A, et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun. 2019;10(1):1198–8 Comprehensive study showing a functional link between microbial activity and dietary immune sensitivity.

  86. Benitez AJ, Hoffmann C, Muir AB, Dods KK, Spergel JM, Bushman FD, et al. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3:23–3.

  87. Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80(8):2546–54.

    PubMed  PubMed Central  Google Scholar 

  88. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73–3.

  89. Sloan TJ, et al. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One. 2018;13(7):e0201410–0 Demonstration of direct impact of low-FODMAP diet on microbiome function, with potential implications for dyspepsia.

  90. Pilichiewicz AN, Horowitz M, Holtmann GJ, Talley NJ, Feinle–Bisset C. Relationship between symptoms and dietary patterns in patients with functional dyspepsia. Clin Gastroenterol Hepatol. 2009;7(3):317–22.

    PubMed  Google Scholar 

  91. Shimpuku M, Futagami S, Tajima N, Yamawaki H, Maruki Y, Kodaka Y, et al. Impact of eating attitude and impairment of physical quality of life between tertiary clinic and primary clinic functional dyspepsia outpatients in Japan. J Neurogastroenterol Motil. 2014;20(4):506–15.

    PubMed  PubMed Central  Google Scholar 

  92. Barbera R, Feinle C, Read NW. Nutrient-specific modulation of gastric mechanosensitivity in patients with functional dyspepsia. Dig Dis Sci. 1995;40(8):1636–41.

    CAS  PubMed  Google Scholar 

  93. Pilichiewicz AN, Feltrin KL, Horowitz M, Holtmann G, Wishart JM, Jones KL, et al. Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am J Gastroenterol. 2008;103(10):2613–23.

    CAS  PubMed  Google Scholar 

  94. Beeckmans D, Farré R, Riethorst D, Keita ÅV, Augustijns P, Söderholm JD, et al. Relationship between bile salts, bacterial translocation, and duodenal mucosal integrity in functional dyspepsia. Neurogastroenterol Motil. 2020;32(5):e13788.

    PubMed  Google Scholar 

  95. Keely S, Talley NJ. Duodenal bile acids as determinants of intestinal mucosal homeostasis and disease. Neurogastroenterol Motil. 2020;32(5):e13854.

    PubMed  Google Scholar 

  96. Lee IS, et al. Fat label compared with fat content: gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. Am J Clin Nutr. 2018;108(1):127–35 Study showing the link between the brain-gut axis and diet in FD patients.

    PubMed  Google Scholar 

  97. Führer M, Vogelsang H, Hammer J. A placebo-controlled trial of an oral capsaicin load in patients with functional dyspepsia. Neurogastroenterol Motil. 2011;23(10):918–e397.

    PubMed  Google Scholar 

  98. Hammer J, Führer M, Pipal L, Matiasek J. Hypersensitivity for capsaicin in patients with functional dyspepsia. Neurogastroenterol Motil. 2008;20(2):125–33.

    CAS  PubMed  Google Scholar 

  99. Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Hirata I, et al. Homozygous TRPV1 315C influences the susceptibility to functional dyspepsia. J Clin Gastroenterol. 2010;44(1):e1–7.

    CAS  PubMed  Google Scholar 

  100. Akbar A, Yiangou Y, Facer P, Walters JRF, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008;57(7):923–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Keely.

Ethics declarations

Conflict of Interest

Grace Burns, Kerith Duncanson, Jennifer Pryor, Jay Horvat and Marjorie Walker declare that they have no conflicts of interest.

Simon Keely reports grants from Commonwealth Diagnostics, grants from Viscera USA, grants and personal fees from Anatara Life Sciences, grants and personal fees from Gossamer Bio Inc., grants from Fisher & Paykel Healthcare Limited, grants from Syntrix Biosystems, and personal fees from Aerpio Pharmaceuticals outside the submitted work. In addition, Dr. Keely has a patent Biomarkers for functional dyspepsia pending.

Nicholas Talley reports grants from Abbott Pharmaceuticals, Commonwealth Diagnostics, Viscera USA, non-financial support from HVN National Science Challenge NZ, grants and personal fees from GI therapies, personal fees from Adelphi values, Allergens PLC, Takeda, Ampligent, Progenity Inc., Sanofi-aventis, IM Health Sciences, Napo Pharmaceutical, Outpost Medicine, Samsung Bioepis, Synergy, Theravance, and Yuhan outside the submitted work. In addition, Dr. Talley has a patent Biomarkers of IBS licensed, a patent Licensing Questionnaires Talley Bowel Disease Questionnaire licensed to Mayo/Talley, a patent Nestec European Patent licensed, and a patent Singapore Provisional Patent “Microbiota Modulation Of BDNF Tissue Repair Pathway” issued. Committees: Australian Medical Council (AMC) [Council Member]; Australian Telehealth Integration Programme; MBS Review Taskforce; and NHMRC Principal Committee (Research Committee) Asia Pacific Association of Medical Journal Editors. Boards: GESA Board Member, Sax Institute, and Committees of the Presidents of Medical Colleges. Community group: Advisory Board, IFFGD (International Foundation for Functional GI Disorders). Miscellaneous: Avant Foundation (judging of research grants).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stomach and Duodenum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryor, J., Burns, G.L., Duncanson, K. et al. Functional Dyspepsia and Food: Immune Overlap with Food Sensitivity Disorders. Curr Gastroenterol Rep 22, 51 (2020). https://doi.org/10.1007/s11894-020-00789-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-020-00789-9

Keywords

Navigation