Skip to main content

Advertisement

Log in

Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and Disease

  • Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

There is growing evidence for the role of several natural products as either useful agents or adjuncts in the management of functional GI disorders (FGIDs). In this review, we examine the medical evidence for three such compounds: chili, a culinary spice; curcumin, another spice and active derivative of a root bark; and prebiotics, which are nondigestible food products. Chili may affect the pathogenesis of abdominal pain especially in functional dyspepsia and cause other symptoms. It may have a therapeutic role in FGIDs through desensitization of transient receptor potential vanilloid-1 receptor. Curcumin, the active ingredient of turmeric rhizome, has been shown in several preclinical studies and uncontrolled clinical trials as having effects on gut inflammation, gut permeability and the brain–gut axis, especially in FGIDs. Prebiotics, the non-digestible food ingredients in dietary fiber, may serve as nutrients and selectively stimulate the growth and/or activity of certain colonic bacteria. The net effect of this change on colonic microbiota may lead to the production of acidic metabolites and other compounds that help to reduce the production of toxins and suppress the growth of harmful or disease-causing enteric pathogens. Although some clinical benefit in IBS has been shown, high dose intake of prebiotics may cause more bloating from bacterial fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bohn L, Storsrud S, Tornblom H, Bengtsson U, Simren M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am J Gastroenterol. 2013;108(5):634–41.

    Article  PubMed  Google Scholar 

  2. Monsbakken KW, Vandvik PO, Farup PG. Perceived food intolerance in subjects with irritable bowel syndrome-- etiology, prevalence and consequences. Eur J Clin Nutr. 2006;60(5):667–72.

    Article  CAS  PubMed  Google Scholar 

  3. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrucci LM, Daniel CR, Kapur K, Chadha P, Shetty H, Graubard BI, et al. Measurement of spices and seasonings in India: opportunities for cancer epidemiology and prevention. Asian Pac J Cancer Prev. 2010;11(6):1621–9.

    PubMed  PubMed Central  Google Scholar 

  5. Govindarajan VS, Sathyanarayana MN. Capsicum--production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit Rev Food Sci Nutr. 1991;29(6):435–74.

    Article  CAS  PubMed  Google Scholar 

  6. Domotor A, Peidl Z, Vincze A, Hunyady B, Szolcsanyi J, Kereskay L, et al. Immunohistochemical distribution of vanilloid receptor, calcitonin-gene related peptide and substance P in gastrointestinal mucosa of patients with different gastrointestinal disorders. Inflammopharmacology. 2005;13(1-3):161–77.

    Article  CAS  PubMed  Google Scholar 

  7. Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther. 2011;131(1):142–70. A recent extensive review on TRP channels in GI tract and their therapeutic potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guarino MP, Cheng L, Ma J, Harnett K, Biancani P, Altomare A, et al. Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol Motil. 2010;22(7):746–51.

    Article  CAS  PubMed  Google Scholar 

  9. Chan CL, Facer P, Davis JB, Smith GD, Egerton J, Bountra C, et al. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet. 2003;361(9355):385–91.

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto K, Hosoya T, Tashima K, Namiki T, Murayama T, Horie S. Distribution of transient receptor potential vanilloid 1 channel-expressing nerve fibers in mouse rectal and colonic enteric nervous system: relationship to peptidergic and nitrergic neurons. Neuroscience. 2011;172:518–34.

    Article  CAS  PubMed  Google Scholar 

  11. Fuhrer M, Hammer J. Effect of repeated, long term capsaicin ingestion on intestinal chemo- and mechanosensation in healthy volunteers. Neurogastroenterol Motil. 2009;21(5):521–7.

    Article  CAS  PubMed  Google Scholar 

  12. Voight EA, Kort ME. Transient receptor potential vanilloid-1 antagonists: a survey of recent patent literature. Expert Opin Ther Pat. 2010;20(9):1107–22.

    Article  CAS  PubMed  Google Scholar 

  13. Chen CL, Yi CH, Liu TT. Comparable effects of capsaicin-containing red pepper sauce and hydrochloric acid on secondary peristalsis in humans. J Gastroenterol Hepatol. 2013;28(11):1712–6.

    Article  CAS  PubMed  Google Scholar 

  14. Herrera-Lopez JA, Mejia-Rivas MA, Vargas-Vorackova F, Valdovinos-Diaz MA. Capsaicin induction of esophageal symptoms in different phenotypes of gastroesophageal reflux disease. Rev Gastroenterol Mex. 2010;75(4):396–404.

    CAS  PubMed  Google Scholar 

  15. Kindt S, Vos R, Blondeau K, Tack J. Influence of intra-oesophageal capsaicin instillation on heartburn induction and oesophageal sensitivity in man. Neurogastroenterol Motil. 2009;21(10):1032–9.

    Article  CAS  PubMed  Google Scholar 

  16. Liu TT, Yi CH, Lei WY, Hung XS, Yu HC, Chen CL. Influence of repeated infusion of capsaicin-contained red pepper sauce on esophageal secondary peristalsis in humans. Neurogastroenterol Motil. 2014;26(10):1487–93.

    Article  CAS  PubMed  Google Scholar 

  17. Touska F, Marsakova L, Teisinger J, Vlachova V. A "cute" desensitization of TRPV1. Curr Pharm Biotechnol. 2011;12(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  18. Liu B, Zhang C, Qin F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci. 2005;25(19):4835–43.

    Article  CAS  PubMed  Google Scholar 

  19. Shima T, Shiina T, Naitou K, Nakamori H, Shimizu Y. Functional roles of capsaicin-sensitive intrinsic neural circuit in the regulation of esophageal peristalsis in rats: in vivo studies using a novel method. Am J Physiol Gastrointest Liver Physiol. 2014;306(9):G811–8.

    Article  CAS  PubMed  Google Scholar 

  20. Smid SD, Blackshaw LA. Neuromuscular function of the human lower oesophageal sphincter in reflux disease and Barrett's oesophagus. Gut. 2000;46(6):756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez R, Dunkel R, Koletzko B, Schusdziarra V, Allescher HD. Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers. Dig Dis Sci. 1998;43(6):1165–71.

    Article  CAS  PubMed  Google Scholar 

  22. Chen CL, Liu TT, Yi CH, Orr WC. Effects of capsaicin-containing red pepper sauce suspension on esophageal secondary peristalsis in humans. Neurogastroenterol Motil. 2010;22(11):1177–82.

    Article  CAS  PubMed  Google Scholar 

  23. Lee KJ, Vos R, Tack J. Effects of capsaicin on the sensorimotor function of the proximal stomach in humans. Aliment Pharmacol Ther. 2004;19(4):415–25.

    Article  CAS  PubMed  Google Scholar 

  24. Hammer J, Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol Motil. 2007;19(4):279–87.

    Article  CAS  PubMed  Google Scholar 

  25. Tache Y, Pappas T, Lauffenburger M, Goto Y, Walsh JH, Debas H. Calcitonin gene-related peptide: potent peripheral inhibitor of gastric acid secretion in rats and dogs. Gastroenterology. 1984;87(2):344–9.

    CAS  PubMed  Google Scholar 

  26. Raimura M, Tashima K, Matsumoto K, Tobe S, Chino A, Namiki T, et al. Neuronal nitric oxide synthase-derived nitric oxide is involved in gastric mucosal hyperemic response to capsaicin in rats. Pharmacology. 2013;92(1-2):60–70.

    Article  CAS  PubMed  Google Scholar 

  27. Patcharatrakul T, Gonlachanvit S. Gastroesophageal reflux symptoms in typical and atypical GERD: roles of gastroesophageal acid refluxes and esophageal motility. J Gastroenterol Hepatol. 2014;29(2):284–90.

    Article  PubMed  Google Scholar 

  28. He J, Ma X, Zhao Y, Wang R, Yan X, Yan H, et al. A population-based survey of the epidemiology of symptom-defined gastroesophageal reflux disease: the Systematic Investigation of Gastrointestinal Diseases in China. BMC Gastroenterol. 2010;10:94.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geratikornsupuk N, Chaiwatanarat T, Gonlachanvit S. Effects of capsaicin containing chili on gastroesophageal acid refluxes (GER) and gastric emptying (GE) in patients with gastroesophageal reflux symptoms. J Gastroenterol Hepatol. 2008;23:A5.

    Google Scholar 

  30. Kriengkirakul C, Vasavid P, Gonlachanvit S. Chili induces epigastrium burning symptom in non-erosive reflux disease (NERD) with no effect on gastric accommodation (GA). J Gastroenterol Hepatol. 2010;25:A14.

    Article  Google Scholar 

  31. Jutaghokiat S, Imraporn B, Gonlachanvit S. Chili improves gastroesophageal reflux symptoms in patients with Non Erosive Gastroesophageal Reflux Disease (NERD). Gastroenterology. 2009;136(5):A92.

    Article  Google Scholar 

  32. Grossi L, Cappello G, Marzio L. Effect of an acute intraluminal administration of capsaicin on oesophageal motor pattern in GORD patients with ineffective oesophageal motility. Neurogastroenterol Motil. 2006;18(8):632–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kiraly A, Suto G, Czimmer J, Horvath OP, Mozsik G. Failure of capsaicin-containing red pepper sauce suspension to induce esophageal motility response in patients with Barrett's esophagus. J Physiol Paris. 2001;95(1-6):197–200.

    Article  CAS  PubMed  Google Scholar 

  34. Fuhrer M, Vogelsang H, Hammer J. A placebo-controlled trial of an oral capsaicin load in patients with functional dyspepsia. Neurogastroenterol Motil. 2011;23(10):918–e397. This study demonstrated visceral hypersensitivity to capsaicin in functional dyspepsia.

    Article  CAS  PubMed  Google Scholar 

  35. Patcharatrakul T, Singhagowinta P, Kullavanijaya P, Gonlachanvit S. Gastrointestinal (GI) symptoms induced by spicy, sour, and fatty food ingestion in Functional Dyspepsia (FD): a difference between Epigastric Pain Syndrome (EPS) and Postprandial Distress Syndrome (PDS). Gastroenterology. 2013;144(5):S549–50.

    Article  Google Scholar 

  36. Bortolotti M, Coccia G, Grossi G, Miglioli M. The treatment of functional dyspepsia with red pepper. Aliment Pharmacol Ther. 2002;16(6):1075–82.

    Article  CAS  PubMed  Google Scholar 

  37. Gonlachanvit S, Fongkam P, Wittayalertpanya S, Kullavanijaya P. Red chili induces rectal hypersensitivity in healthy humans: possible role of 5HT-3 receptors on capsaicin-sensitive visceral nociceptive pathways. Aliment Pharmacol Ther. 2007;26(4):617–25.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi K, Shibata C, Nagao M, Sato M, Kakyo M, Kinouchi M, et al. Intracolonic capsaicin stimulates colonic motility and defecation in conscious dogs. Surgery. 2010;147(6):789–97.

    Article  PubMed  Google Scholar 

  39. Gonlachanvit S, Mahayosnond A, Kullavanijaya P. Effects of chili on postprandial gastrointestinal symptoms in diarrhoea predominant irritable bowel syndrome: evidence for capsaicin-sensitive visceral nociception hypersensitivity. Neurogastroenterol Motil. 2009;21(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal MK, Bhatia SJ, Desai SA, Bhure U, Melgiri S. Effect of red chillies on small bowel and colonic transit and rectal sensitivity in men with irritable bowel syndrome. Indian J Gastroenterol. 2002;21(5):179–82.

    PubMed  Google Scholar 

  41. Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008;57(7):923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmulson MJ, Valdovinos MA, Milke P, Zubiran S. Chili pepper and rectal hypera gesia in irritable bowel syndrome. Am J Gastroenterol. 2003;98(5):1214–5.

    Article  PubMed  Google Scholar 

  43. Aniwan S, Gonlachanvit S. Effects of chili treatment on gastrointestinal and rectal sensation in diarrhea-predominant irritable bowel syndrome: a randomized, double-blinded, crossover study. J Neurogastroenterol Motil. 2014;20(3):400–6. This study demonstrated desensitization effect of 6-week chili ingestion on upper and lower GI symptoms in IBS-D patients.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bortolotti M, Porta S. Effect of red pepper on symptoms of irritable bowel syndrome: preliminary study. Dig Dis Sci. 2011;56(11):3288–95.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar S, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10, CD008424.

    PubMed  PubMed Central  Google Scholar 

  47. Thong-Ngam D, Choochuai S, Patumraj S, Chayanupatkul M, Klaikeaw N. Curcumin prevents indomethacin-induced gastropathy in rats. World J Gastroenterol. 2012;18(13):1479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys. 2014;559:91–9.

    Article  CAS  PubMed  Google Scholar 

  49. Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu L, Liu YL, Liu GX, Chen X, Yang K, Yang YX, et al. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int Immunopharmacol. 2013;17(2):314–20.

    Article  CAS  PubMed  Google Scholar 

  51. Zeng Z, Zhan L, Liao H, Chen L, Lv X. Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR4/NF-kappaB signaling pathway. Planta Med. 2013;79(2):102–9.

    CAS  PubMed  Google Scholar 

  52. Ali T, Shakir F, Morton J. Curcumin and inflammatory bowel disease: biological mechanisms and clinical implication. Digestion. 2012;85(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  53. Wang N, Wang G, Hao J, Ma J, Wang Y, Jiang X, et al. Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Dig Dis Sci. 2012;57(7):1792–801.

    Article  CAS  PubMed  Google Scholar 

  54. De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB, et al. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother. 2009;53(4):1592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foryst-Ludwig A, Neumann M, Schneider-Brachert W, Naumann M. Curcumin blocks NF-kappaB and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun. 2004;316(4):1065–72.

    Article  CAS  PubMed  Google Scholar 

  56. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J. 2008;410(1):147–55.

    Article  CAS  PubMed  Google Scholar 

  57. Han C, Wang L, Yu K, Chen L, Hu L, Chen K, et al. Biochemical characterization and inhibitor discovery of shikimate dehydrogenase from Helicobacter pylori. FEBS J. 2006;273(20):4682–92.

    Article  CAS  PubMed  Google Scholar 

  58. Shimouchi A, Nose K, Takaoka M, Hayashi H, Kondo T. Effect of dietary turmeric on breath hydrogen. Dig Dis Sci. 2009;54(8):1725–9.

    Article  CAS  PubMed  Google Scholar 

  59. Yu Y, Wu S, Li J, Wang R, Xie X, Yu X, et al. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling. Metab Brain Dis. 2015;31(1):47–55.

    Article  Google Scholar 

  60. Hurley LL, Akinfiresoye L, Nwulia E, Kamiya A, Kulkarni AA, Tizabi Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav Brain Res. 2013;239:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rinwa P, Kumar A, Garg S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One. 2013;8(4), e61052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tajik H, Tamaddonfard E, Hamzeh-Gooshchi N. The effect of curcumin (active substance of turmeric) on the acetic acid-induced visceral nociception in rats. Pak J Biol Sci. 2008;11(2):312–4.

    Article  CAS  PubMed  Google Scholar 

  63. Zhi L, Dong L, Kong D, Sun B, Sun Q, Grundy D, et al. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil. 2013;25(6):e429–40. An animal study which demonstrated a mechanism of intestinal anti-nociception of curcumin via TRPV-1 receptors.

    Article  CAS  PubMed  Google Scholar 

  64. Aldini R, Budriesi R, Roda G, Micucci M, Ioan P, D'Errico-Grigioni A, et al. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect. PLoS One. 2012;7(9), e44650.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gilani AH, Shah AJ, Ghayur MN, Majeed K. Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci. 2005;76(26):3089–105.

    Article  CAS  PubMed  Google Scholar 

  66. Xu L, Li Z, Guo F. Curcumin improves expression of ghrelin through attenuating oxidative stress in gastric tissues of streptozotocin-induced diabetic gastroparesis rats. Eur J Pharmacol. 2013;718(1-3):219–25.

    Article  CAS  PubMed  Google Scholar 

  67. Di Mario F, Cavallaro LG, Nouvenne A, Stefani N, Cavestro GM, Iori V, et al. A curcumin-based 1-week triple therapy for eradication of Helicobacter pylori infection: something to learn from failure? Helicobacter. 2007;12(3):238–43.

    Article  PubMed  Google Scholar 

  68. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord. 2014;167:368–75.

    Article  CAS  PubMed  Google Scholar 

  69. Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, et al. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res. 2014;28(4):579–85.

    Article  CAS  PubMed  Google Scholar 

  70. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  71. Martin RC, Aiyer HS, Malik D, Li Y. Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs curcumin: Similar root but different effects. Food Chem Toxicol. 2012;50(2):227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847–54.

    Article  CAS  PubMed  Google Scholar 

  74. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1–63.

    Article  CAS  PubMed  Google Scholar 

  75. Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006;24(5):701–14.

    Article  CAS  PubMed  Google Scholar 

  76. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45(Suppl):S120–7.

    Article  CAS  PubMed  Google Scholar 

  77. Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care. 2012;15(5):474–9.

    Article  CAS  PubMed  Google Scholar 

  78. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, DeRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    Article  CAS  PubMed  Google Scholar 

  80. Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012;11(12):5573–85.

    Article  CAS  PubMed  Google Scholar 

  81. De Peter V, Falony G, Windey K, Hamer HM, De Vuyst L, Verbeke K. The prebiotic, oligofructose-enriched inulin modulates the faecal metabolite profile: an in vitro analysis. Mol Nutr Food Res. 2010;54(12):1791–801.

    Article  Google Scholar 

  82. Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77(1-2):220–8.

    CAS  PubMed  Google Scholar 

  83. Cederlund A, Kai-Larsen Y, Printz G, Yoshio H, Alvelius G, Lagercrantz H, et al. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis. PLoS One. 2013;8(1), e53876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ohman L, Simren M. Intestinal microbiota and its role in irritable bowel syndrome (IBS). Curr Gastroenterol Rep. 2013;15(5):323.

    Article  PubMed  Google Scholar 

  85. Paineau D, Payen F, Panserieu S, Coulombier G, Sobaszek A, Lartigau I, et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br J Nutr. 2008;99(2):311–8.

    Article  CAS  PubMed  Google Scholar 

  86. Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29(5):508–18.

    Article  CAS  PubMed  Google Scholar 

  87. Hunter JO, Tuffnell Q, Lee AJ. Controlled trial of oligofructose in the management of irritable bowel syndrome. J Nutr. 1999;129(7 Suppl):1451S–3.

    CAS  PubMed  Google Scholar 

  88. Olesen M, Gudmand-Hoyer E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr. 2000;72(6):1570–5.

    CAS  PubMed  Google Scholar 

  89. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64(1):93–100. A randomized cross-over study demonstrated that a 21-day low FODMAP intake had effects on gut microbiota composition.

    Article  CAS  PubMed  Google Scholar 

  90. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutep Gonlachanvit.

Ethics declarations

Conflicts of Interest

TP and SG declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

With regard to the authors’ research cited in this paper, all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. In addition, all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

This article is part of the Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patcharatrakul, T., Gonlachanvit, S. Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and Disease. Curr Gastroenterol Rep 18, 19 (2016). https://doi.org/10.1007/s11894-016-0494-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-016-0494-0

Keywords

Navigation