Skip to main content

IBD and the Gut Microbiota—from Bench to Personalized Medicine

Abstract

Inflammatory bowel diseases (IBD) are chronic relapsing inflammatory disorders involving the gastrointestinal (GI) tract, which arise from the confluence of genetic, immunological, microbial, and environmental factors. Clinical, genetic, and experimental data support the role of gut microbiota in contributing to the etiopathogenesis of these diseases. In IBD, the development of gut dysbiosis and imbalances in host–microbe relationships contribute to the extent, severity, and chronicity of intestinal inflammation. With continued advances in knowledge, technology, bioinformatics tools, and capabilities to define disease subsets, we will be able to lower risk and improve clinical outcomes in IBD through individualized interventions that restore host–microbial balance. This article provides a critical review of the field, based on the latest clinical and experimental information.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van der Valk ME, Mangen MJ, Leenders M, Dijkstra G, van Bodegraven AA, Fidder HH, et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFalpha therapy: results from the COIN study. Gut. 2014;63(1):72–9.

    PubMed  Article  Google Scholar 

  2. Stone CD. The economic burden of inflammatory bowel disease: clear problem, unclear solution. Dig Dis Sci. 2012;57(12):3042–4.

    PubMed  Article  Google Scholar 

  3. Safarpour AR, Hosseini SV, Mehrabani D. Epidemiology of inflammatory bowel diseases in Iran and Asia; a mini review. Iran J Med Sci. 2013;38(2 Suppl):140–9.

    PubMed Central  PubMed  Google Scholar 

  4. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol. 2013;29(4):357–62.

    CAS  PubMed  Article  Google Scholar 

  5. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53.

    CAS  PubMed  Article  Google Scholar 

  6. Vora P, Shih DQ, McGovern DP, Targan SR. Current concepts on the immunopathogenesis of inflammatory bowel disease. Front Biosci (Elite Ed). 2012;4:1451–77.

    Article  Google Scholar 

  7. Bernstein CN, Shanahan F. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut. 2008;57(9):1185–91.

    PubMed  Article  Google Scholar 

  8. Mathis D, Benoist C. The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding. Immunol Rev. 2012;245(1):239–49.

    CAS  PubMed  Article  Google Scholar 

  9. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014.

  10. West CE. Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care. 2014.

  11. Rettger L, Cheplin H. Bacillus acidophilus and its therapeutic application. Arch Intern Med. 1922;29:357–67.

    Article  Google Scholar 

  12. Rettger L, Cheplin H. Treatise on the transformation of intestinal flora with special reference to the implantation of Bacillus acidophilus. Yale University Press. 1921.

  13. Rodaniche E, Palmer W, Kirsner J. The streptococci present in the feces of patients with non-specific ulcerative colitis, and the effect of oral administration of sulfonamide compounds upon them. J Infect Dis. 1943;72:222–7.

    Article  Google Scholar 

  14. Rutgeerts P, Goboes K, Peeters M, Hiele M, Penninckx F, Aerts R, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338(8770):771–4.

    CAS  PubMed  Article  Google Scholar 

  15. D’Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998;114(2):262–7.

    PubMed  Article  Google Scholar 

  16. Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10(4):287–91.

    CAS  PubMed  Article  Google Scholar 

  17. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    PubMed Central  PubMed  Article  Google Scholar 

  18. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008;57(11):1605–15.

    CAS  PubMed  Article  Google Scholar 

  19. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  21. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499(7457):219–22.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  22. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    CAS  PubMed  Article  Google Scholar 

  23. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    CAS  PubMed  Article  Google Scholar 

  24. Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A. 2009;106(37):15813–8.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  25. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–84.

    PubMed  Article  Google Scholar 

  26. Van Limbergen J, Radford-Smith G, Satsangi J. Advances in IBD genetics. Nat Rev Gastroenterol Hepatol. 2014.

  27. Gutierrez A, Scharl M, Sempere L, Holler E, Zapater P, Almenta I, et al. Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn’s disease. Gut. 2014;63(2):272–80. One of the first studies associating genetics, microbiome and clinical response to biologic therapy.

    CAS  PubMed  Google Scholar 

  28. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71.

    CAS  PubMed  Article  Google Scholar 

  29. Deuring JJ, Fuhler GM, Konstantinov SR, Peppelenbosch MP, Kuipers EJ, de Haar C, et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn’s disease. Gut. 2013.

  30. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  31. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54 e42; quiz e30.

  32. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  33. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. An important study of human populations that demonstrate a correlation between diet and gut microbiota.

    PubMed Central  PubMed  Article  Google Scholar 

  35. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487(7405):104–8. One of the first studies to show how western diets can create a colitis promoting dysbiosis in genetically susceptible hosts.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Martinez-Medina M, Denizot J, Dreux N, Robin F, Billard E, Bonnet R, et al. Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014;63(1):116–24.

    PubMed  Article  Google Scholar 

  37. Marlow G, Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Jesuthasan AC, et al. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum Genomics. 2013;7:24.

    PubMed Central  PubMed  Article  Google Scholar 

  38. Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.

    PubMed Central  PubMed  Article  Google Scholar 

  39. Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36.

    PubMed  Article  Google Scholar 

  40. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.

    PubMed Central  PubMed  Article  Google Scholar 

  41. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92. This is one of the few studies defining the microbiome and dysbiosis in treatment-naïve patients with early onset of Crohn’s disease.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  42. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013.

  43. Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. Increased proportions of bifidobacterium and the lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52(2):398–406.

    PubMed Central  PubMed  Article  Google Scholar 

  44. Lepage P, Colombet J, Marteau P, Sime-Ngando T, Dore J, Leclerc M. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut. 2008;57(3):424–5.

    CAS  PubMed  Article  Google Scholar 

  45. Perez-Brocal V, Garcia-Lopez R, Vazquez-Castellanos JF, Nos P, Beltran B, Latorre A, et al. Study of the viral and microbial communities associated with Crohn’s disease: a metagenomic approach. Clin Transl Gastroenterol. 2013;4:e36.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol. 2013.

  47. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4578–85.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  48. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28 Suppl 4:9–17.

    CAS  PubMed  Article  Google Scholar 

  49. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149(7):1578–93.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  50. Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol. 2011;14(1):106–14. Outstanding review of the role of gut microbiota in maintaining immune homeostasis.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  51. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21(1):15–25.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  52. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6. One of the best papers demonstrating the clinical efficacy of specific microbes in mitigating inflammation in IBD.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  53. Martin R, Chain F, Miquel S, Lu J, Gratadoux JJ, Sokol H, et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis. 2014;20(3):417–30. One of the best papers demonstrating the clinical efficacy of specific microbes in mitigating inflammation in IBD.

    PubMed  Article  Google Scholar 

  54. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  55. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One. 2012;7(11):e49138.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  56. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    CAS  PubMed  Article  Google Scholar 

  57. Lennon G, Balfe A, Bambury N, Lavelle A, Maguire A, Docherty NG, et al. Correlations between colonic crypt mucin chemotype, inflammatory grade and Desulfovibrio species in ulcerative colitis. Colorectal Dis. 2013.

  58. Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, O’Connell PR. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010;53(11):1530–6.

    PubMed  Article  Google Scholar 

  59. De Preter V, Arijs I, Windey K, Vanhove W, Vermeire S, Schuit F, et al. Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis. Inflamm Bowel Dis. 2012;18(12):2371–80.

    PubMed  Article  Google Scholar 

  60. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  61. Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51(4):304–14.

    CAS  PubMed  Google Scholar 

  62. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science. 2013;339(6120):708–11.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  63. Shen J, Zuo ZX, Mao AP. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm Bowel Dis. 2014;20(1):21–35. Important meta-analysis evaluating the effect of probiotics in UC.

    PubMed  Article  Google Scholar 

  64. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology. 2000;119(2):305–9.

    CAS  PubMed  Article  Google Scholar 

  65. Mimura T, Rizzello F, Helwig U, Poggioli G, Schreiber S, Talbot IC, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 2004;53(1):108–14.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  66. Persborn M, Gerritsen J, Wallon C, Carlsson A, Akkermans LM, Soderholm JD. The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis. Aliment Pharmacol Ther. 2013;38(7):772–83.

    CAS  PubMed  Article  Google Scholar 

  67. Tomasz B, Zoran S, Jaroslaw W, Ryszard M, Marcin G, Robert B, et al. Long-term use of probiotics Lactobacillus and Bifidobacterium has a prophylactic effect on the occurrence and severity of pouchitis: a randomized prospective study. Biomed Res Int. 2014;2014:208064.

    PubMed Central  PubMed  Article  Google Scholar 

  68. Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374(1–2):1–11.

    CAS  PubMed  Article  Google Scholar 

  69. Petrof EO, Kojima K, Ropeleski MJ, Musch MW, Tao Y, De Simone C, et al. Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology. 2004;127(5):1474–87.

    CAS  PubMed  Article  Google Scholar 

  70. Lee SK, Kim YW, Chi SG, Joo YS, Kim HJ. The effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis. Dig Dis Sci. 2009;54(2):255–63.

    CAS  PubMed  Article  Google Scholar 

  71. Vilela EG, Ferrari MDD, Torres HOD, Pinto AG, Aguirre ACC, Martins FP, et al. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43(7):842–8.

    CAS  Article  Google Scholar 

  72. Bourreille A, Cadiot G, Le Dreau G, Laharie D, Beaugerie L, Dupas JL, et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin Gastroenterol Hepatol. 2013;11(8):982–7.

    PubMed  Article  Google Scholar 

  73. Kruis W. Probiotics. Dig Dis. 2013;31(3–4):385–7.

    PubMed  Article  Google Scholar 

  74. Van Assche G, Dignass A, Bokemeyer B, Danese S, Gionchetti P, Moser G, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 3: special situations. J Crohns Colitis. 2013;7(1):1–33.

    PubMed  Article  Google Scholar 

  75. Pardi DS, D’Haens G, Shen B, Campbell S, Gionchetti P. Clinical guidelines for the management of pouchitis. Inflamm Bowel Dis. 2009;15(9):1424–31.

    PubMed  Article  Google Scholar 

  76. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4554–61.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70 Suppl 1:S2–9.

    PubMed Central  PubMed  Article  Google Scholar 

  78. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–803. Large population-based study determining increased risk for IBD development after antianaerobic antibiotic exposure in the childhood.

    PubMed Central  PubMed  Article  Google Scholar 

  79. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9(4):279–90.

    CAS  PubMed  Article  Google Scholar 

  80. Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011;106(4):661–73.

    CAS  PubMed  Article  Google Scholar 

  81. Wang SL, Wang ZR, Yang CQ. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp Ther Med. 2012;4(6):1051–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Prantera C, Lochs H, Grimaldi M, Danese S, Scribano ML, Gionchetti P, et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology. 2012;142(3):473–81 e4. Important phase II randomized controlled trial demonstrating potential benefit of rifaximin-extended intestinal release in Crohn’s disease treatment.

  83. Herfarth HH, Katz JA, Hanauer SB, Sandborn WJ, Loftus Jr EV, Sands BE, et al. Ciprofloxacin for the prevention of postoperative recurrence in patients with Crohn’s disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm Bowel Dis. 2013;19(5):1073–9.

    PubMed  Article  Google Scholar 

  84. Manosa M, Cabre E, Bernal I, Esteve M, Garcia-Planella E, Ricart E, et al. Addition of metronidazole to azathioprine for the prevention of postoperative recurrence of Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Inflamm Bowel Dis. 2013;19(9):1889–95.

    PubMed  Google Scholar 

  85. D’Haens GR, Vermeire S, Van Assche G, Noman M, Aerden I, Van Olmen G, et al. Therapy of metronidazole with azathioprine to prevent postoperative recurrence of Crohn’s disease: a controlled randomized trial. Gastroenterology. 2008;135(4):1123–9.

    PubMed  Article  Google Scholar 

  86. Brandt LJ, Bernstein LH, Boley SJ, Frank MS. Metronidazole therapy for perineal Crohn’s disease: a follow-up study. Gastroenterology. 1982;83(2):383–7.

    CAS  PubMed  Google Scholar 

  87. Jakobovits J, Schuster MM. Metronidazole therapy for Crohn’s disease and associated fistulae. Am J Gastroenterol. 1984;79(7):533–40.

    CAS  PubMed  Google Scholar 

  88. Dewint P, Hansen BE, Verhey E, Oldenburg B, Hommes DW, Pierik M, et al. Adalimumab combined with ciprofloxacin is superior to adalimumab monotherapy in perianal fistula closure in Crohn’s disease: a randomised, double-blind, placebo controlled trial (ADAFI). Gut. 2014;63(2):292–9. Important study showing increased rates of fistula closure when using combination therapy, however response was not sustained after ciprofloxacin was discontinued.

    CAS  PubMed  Google Scholar 

  89. Bennet JD, Brinkman M. Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet. 1989;1(8630):164.

    CAS  PubMed  Article  Google Scholar 

  90. Palmer R. Fecal matters. Nat Med. 2011;17(2):150–2.

    CAS  PubMed  Article  Google Scholar 

  91. Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108(10):1620–30. One of the few studies correlating the gut microbiome dynamic after FMT in UC patients with clinical outcome.

    CAS  PubMed  Article  Google Scholar 

  92. De Leon LM, Watson JB, Kelly CR. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol. 2013;11(8):1036–8.

    PubMed  Article  Google Scholar 

  93. Quera R, Espinoza R, Estay C, Rivera D. Bacteremia as an adverse event of fecal microbiota transplantation in a patient with Crohn’s disease and recurrent Clostridium difficile infection. J Crohns Colitis. 2014;8(3):252–3.

    PubMed  Article  Google Scholar 

  94. Gordon H, Harbord M. A patient with severe Crohn’s colitis responds to faecal microbiota transplantation. J Crohns Colitis. 2013.

  95. Kump PK, Grochenig HP, Lackner S, Trajanoski S, Reicht G, Hoffmann KM, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis. 2013;19(10):2155–65.

    PubMed  Article  Google Scholar 

  96. Kahn SA, Vachon A, Rodriquez D, Goeppinger SR, Surma B, Marks J, et al. Patient perceptions of fecal microbiota transplantation for ulcerative colitis. Inflamm Bowel Dis. 2013;19(7):1506–13.

    PubMed Central  PubMed  Article  Google Scholar 

  97. Clinicalgov. Manipulating the microbiome in IBD by antibiotics and FMT. NCT02033408 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT02033408?term=fmt+and+ibd&rank=1.

  98. Clinicalgov. Standardized fecal microbiota transplantation for Crohn’s diseases. NCT01793831 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01793831?term=fmt+and+ibd&rank=2.

  99. Clinicalgov. Impact of fecal biotherapy (FBT) on microbial diversity in patients with moderate to severe inflammatory bowel disease. NCT01847170 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01847170?term=fmt+and+ibd&rank=3.

  100. Clinicalgov. Faecal microbiota transplantation in ulcerative colitis (FOCUS). NCT01896635 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01896635?term=fmt+and+ibd&rank=4.

  101. Clinicalgov. Fecal microbiota transplantation (FMT) for treatment of ulcerative colitis in children. NCT01947101 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01947101?term=fmt+and+ibd&rank=5.

  102. Clinicalgov. Standardized fecal microbiota transplantation for ulcerative colitis. NCT01790061 [Internet]. 2013. Available from: http://clinicaltrials.gov/ct2/show/NCT01790061?term=fmt+and+ibd&rank=7.

Download references

Acknowledgments

This review is dedicated to the memory of Joseph B. Kirsner, M.D., Ph.D., a pioneer in the study of inflammatory bowel diseases and a tireless advocate for his IBD patients, and to Lloyd Mayer, M.D., who will always be remembered for his seminal contributions to the field, collegiality, and steadfast friendship. Emanuelle Bellaguarda and Eugene B. Chang have received grants NIDDK (DK42086 (DDRCC), DK097268, and DK47722 unrelated to this article.

Compliance with Ethics Guidelines

Conflict of Interest

Emanuelle Bellaguarda and Eugene B. Chang have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene B. Chang.

Additional information

This article is part of the Topical Collection on Inflammatory Bowel Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellaguarda, E., Chang, E.B. IBD and the Gut Microbiota—from Bench to Personalized Medicine. Curr Gastroenterol Rep 17, 15 (2015). https://doi.org/10.1007/s11894-015-0439-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-015-0439-z

Keywords

  • IBD
  • Gut microbiome
  • Dysbiosis
  • Probiotics
  • Prebiotics
  • Antibiotics
  • Host–microbe interactions
  • Mucosal immunology
  • Intestinal inflammation
  • Crohn’s disease
  • Ulcerative colitis
  • Precision medicine
  • Western diet
  • Fecal microbiota transplantation