Intestine and Multivisceral Transplantation: Current Status and Future Directions

  • Chandrashekhar A. Kubal
  • Richard S. Mangus
  • A. Joseph Tector
Small Intestine (J Sellin, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Small Intestine

Abstract

Intestinal failure and associated parenteral nutrition-induced liver failure cause significant morbidity, mortality, and health care burden. Intestine transplantation is now considered to be the standard of care in patients with intestinal failure who fail intestinal rehabilitation. Intestinal failure-associated liver disease is an important sequela of intestinal failure, caused by parenteral lipids, requiring simultaneous liver-intestine transplant. Lipid minimization and, in recent years, the emergence of fish oil-based lipid emulsions have been shown to reverse parenteral nutrition-associated hyperbilirubinemia, but not fibrosis. Significant progress in surgical techniques and immunosuppression has led to improved outcomes after intestine transplantation. Intestine in varying combination with liver, stomach, and pancreas, also referred to as multivisceral transplantation, is performed for patients with intestinal failure along with liver disease, surgical abdominal catastrophes, neuroendocrine and slow-growing tumors, and complete portomesenteric thrombosis with cirrhosis of the liver. Although acute and chronic rejection are major problems, long-term survivors have excellent quality of life and remain free of parenteral nutrition.

Keywords

Intestinal failure Intestine transplantation Liver failure Multivisceral transplantation Parenteral nutrition Acute rejection Chronic rejection Immunosuppression 

References

  1. 1.
    Lillehei RC, Goott B, Miller FA. Homografts of the small bowel. Surg Forum. 1960;10:197–201.PubMedGoogle Scholar
  2. 2.
    Starzl TE, Kaupp Jr HA. Mass homotransplantation of abdominal organs in dogs. Surg Forum. 1960;11:28–30.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Pritchard TJ, Kirkman RL. Small bowel transplantation. World J Surg. 1985;9(6):860–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Deltz E et al. Successful clinical small-bowel transplantation. Transplant Proc. 1990;22(6):2501.PubMedGoogle Scholar
  5. 5.
    Alican F et al. Intestinal transplantation: laboratory experience and report of a clinical case. Am J Surg. 1971;121(2):150–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lillehei RC et al. Transplantation of stomach, intestine, and pancreas: experimental and clinical observations. Surgery. 1967;62(4):721–41.PubMedGoogle Scholar
  7. 7.
    Calne RY et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151):1033–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Grant D et al. Successful small-bowel/liver transplantation. Lancet. 1990;335(8683):181–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Starzl TE et al. Abdominal organ cluster transplantation for the treatment of upper abdominal malignancies. Ann Surg. 1989;210(3):374–85. discussion 385–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Abu-Elmagd KM et al. Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. Ann Surg. 2012;256(3):494–508.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith JM et al. OPTN/SRTR 2012 annual data report: intestine. Am J Transplant. 2014;14 Suppl 1:97–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Schalamon J, Mayr JM, Hollwarth ME. Mortality and economics in short bowel syndrome. Best Pract Res Clin Gastroenterol. 2003;17(6):931–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Boland E et al. A 25-year experience with postresection short-bowel syndrome secondary to radiation therapy. Am J Surg. 2010;200(6):690–3. discussion 693.PubMedCrossRefGoogle Scholar
  14. 14.
    Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1111–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Hofstetter S, Stern L, Willet J. Key issues in addressing the clinical and humanistic burden of short bowel syndrome in the US. Curr Med Res Opin. 2013;29(5):495–504.PubMedCrossRefGoogle Scholar
  16. 16.
    Iyer KR. Surgical management of short bowel syndrome. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):53S–9S.PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall GR et al. Donor management parameters and organ yield: single center results. J Surg Res. 2014;191(1):208–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Cruz Jr RJ et al. Modified multivisceral transplantation with spleen-preserving pancreaticoduodenectomy for patients with familial adenomatous polyposis “Gardner’s Syndrome”. Transplantation. 2011;91(12):1417–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Tzakis AG et al. Partial abdominal exenteration, ex vivo resection of a large mesenteric fibroma, and successful orthotopic intestinal autotransplantation. Surgery. 2000;128(3):486–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wheeler M et al. Surgical treatment of intra-abdominal desmoid tumors resulting in short bowel syndrome. Cancer (Basel). 2012;4(1):31–8.CrossRefGoogle Scholar
  21. 21.
    Nikeghbalian S et al. Multivisceral transplantation for the treatment of intra-abdominal tumors. Transplant Proc. 2013;45(10):3528–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Mangus R.S., M.M., Kubal C.A., Fridell J.A., Tector J.A., Multivisceral Transplantation for Non-Resectable Abdominal Neuroendocrine Tumors. Gastroenterology, 2014. 146(5): p. S-1031.Google Scholar
  23. 23.
    Bhangui P et al. Caval inflow to the graft for liver transplantation in patients with diffuse portal vein thrombosis: a 12-year experience. Ann Surg. 2011;254(6):1008–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Costa G, Cruz Jr RJ, Abu-Elmagd KM. Surgical shunt versus TIPS for treatment of variceal hemorrhage in the current era of liver and multivisceral transplantation. Surg Clin North Am. 2010;90(4):891–905.PubMedCrossRefGoogle Scholar
  25. 25.
    Vianna RM et al. Multivisceral transplantation for diffuse portomesenteric thrombosis. Ann Surg. 2012;255(6):1144–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Grubbs V et al. Medicare immunosuppressant coverage and access to kidney transplantation: a retrospective national cohort study. BMC Health Serv Res. 2012;12:254.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Testa G et al. Simultaneous or sequential combined living donor-intestine transplantation in children. Transplantation. 2008;85(5):713–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Iwaki Y et al. Replacement of donor lymphoid tissue in small-bowel transplants. Lancet. 1991;337(8745):818–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sirinek LP, O’Dorisio MS, Dunaway DJ. Accumulation of donor-specific cytotoxic T cells in intestinal lymphoid tissues following intestinal transplantation. J Clin Immunol. 1995;15(5):258–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Wu G et al. Graft-versus-host disease after intestinal and multivisceral transplantation. Transplantation. 2011;91(2):219–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Myburgh JA et al. Hyperacute rejection in human-kidney allografts-shwartzman or arthus reaction? N Engl J Med. 1969;281(3):131–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Kissmeyer-Nielsen F et al. Hyperacute rejection of kidney allografts, associated with pre-existing humoral antibodies against donor cells. Lancet. 1966;2(7465):662–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med. 1969;280(14):735–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Gondolesi G et al. Pretransplant immunomodulation of highly sensitized small bowel transplant candidates with intravenous immune globulin. Transplantation. 2006;81(12):1743–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Hawksworth JS et al. Successful isolated intestinal transplantation in sensitized recipients with the use of virtual crossmatching. Am J Transplant. 2012;12 Suppl 4:S33–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Abu-Elmagd KM et al. Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant. 2012;12(11):3047–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Bond G et al. The impact of positive T-cell lymphocytotoxic crossmatch on intestinal allograft rejection and survival. Transplant Proc. 2000;32(6):1197–8.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kubal CA et al. Impact of positive flow cytometry crossmatch on outcomes of intestinal/multivisceral transplantation: role anti-IL-2 receptor antibody. Transplantation. 2013;95(9):1160–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Gerlach, U.A., et al., Clinical relevance of the de novo production of anti-HLA antibodies following intestinal and multivisceral transplantation. Transpl Int, 2013.Google Scholar
  40. 40.
    Tsai HL et al. Association between donor-specific antibodies and acute rejection and resolution in small bowel and multivisceral transplantation. Transplantation. 2011;92(6):709–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Tzakis AG et al. 100 multivisceral transplants at a single center. Ann Surg. 2005;242(4):480–90. discussion 491–3.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Murase N et al. Long survival in rats after multivisceral versus isolated small-bowel allotransplantation under FK 506. Surgery. 1991;110(1):87–98.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Abu-Elmagd K et al. Clinical intestinal transplantation: new perspectives and immunologic considerations. J Am Coll Surg. 1998;186(5):512–25. discussion 525–7.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Meier D, Rumbo M, Gondolesi GE. Current status of allograft tolerance in intestinal transplantation. Int Rev Immunol. 2014;33(3):245–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Calne R, Davies H. Organ graft tolerance: the liver effect. Lancet. 1994;343(8889):67–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Edwards-Smith C et al. Allograft acceptance and rejection, mediated by a liver suppressor factor, LSF-1, purified from serum of liver transplanted rats. Transpl Immunol. 1996;4(4):287–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Ruiz P et al. International grading scheme for acute cellular rejection in small-bowel transplantation: single-center experience. Transplant Proc. 2010;42(1):47–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia M et al. Campath-1H immunosuppressive therapy reduces incidence and intensity of acute rejection in intestinal and multivisceral transplantation. Transplant Proc. 2004;36(2):323–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Sudan DL et al. Isolated intestinal transplantation for intestinal failure. Am J Gastroenterol. 2000;95(6):1506–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Ishii T et al. Exfoliative rejection after intestinal transplantation in children. Pediatr Transplant. 2003;7(3):185–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Ruiz P et al. Histological criteria for the identification of acute cellular rejection in human small bowel allografts: results of the pathology workshop at the VIII International Small Bowel Transplant Symposium. Transplant Proc. 2004;36(2):335–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Boshuizen JA et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003;77(24):13005–16.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Cliffe LJ et al. An increase in epithelial cell apoptosis is associated with chronic intestinal nematode infection. Infect Immun. 2007;75(4):1556–64.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Papadimitriou JC et al. Histologic features of mycophenolate mofetil-related colitis: a graft-versus-host disease-like pattern. Int J Surg Pathol. 2003;11(4):295–302.PubMedCrossRefGoogle Scholar
  55. 55.
    Ruiz P. Updates on acute and chronic rejection in small bowel and multivisceral allografts. Curr Opin Organ Transplant. 2014;19(3):293–302.PubMedGoogle Scholar
  56. 56.
    Kato T et al. Intestinal and multivisceral transplantation in children. Ann Surg. 2006;243(6):756–64. discussion 764–6.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Mangus RS et al. Multivisceral transplantation: expanding indications and improving outcomes. J Gastrointest Surg. 2013;17(1):179–86. discussion p 186–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Kusne S et al. Infectious complications after small bowel transplantation in adults: an update. Transplant Proc. 1996;28(5):2761–2.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Todo S et al. Outcome analysis of 71 clinical intestinal transplantations. Ann Surg. 1995;222(3):270–80. discussion 280–2.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Tzakis AG. Cytomegalovirus prophylaxis with ganciclovir and cytomegalovirus immune globulin in liver and intestinal transplantation. Transpl Infect Dis. 2001;3 Suppl 2:35–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Florescu DF et al. An international survey of cytomegalovirus prevention and treatment practices in intestinal transplantation. Transplantation. 2014;97(1):78–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Ramos E et al. Post-transplant lymphoproliferative disorders and other malignancies after pediatric intestinal transplantation: incidence, clinical features and outcome. Pediatr Transplant. 2013;17(5):472–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Fishbein TM. Intestinal transplantation. N Engl J Med. 2009;361(10):998–1008.PubMedCrossRefGoogle Scholar
  64. 64.
    Andres AM et al. Graft-vs-host disease after small bowel transplantation in children. J Pediatr Surg. 2010;45(2):330–6. discussion 336.PubMedCrossRefGoogle Scholar
  65. 65.
    Abu-Elmagd KM et al. Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann Surg. 2009;250(4):567–81.PubMedGoogle Scholar
  66. 66.
    Lee RG et al. Pathology of human intestinal transplantation. Gastroenterology. 1996;110(6):1820–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Nassif S et al. Clinicopathologic features of post-transplant lymphoproliferative disorders arising after pediatric small bowel transplant. Pediatr Transplant. 2013;17(8):765–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Farmer DG et al. Incidence, timing, and significance of early hypogammaglobulinemia after intestinal transplantation. Transplantation. 2013;95(9):1154–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Goldfarb NS et al. Hypogammaglobulinemia in lung transplant recipients. Transplantation. 2001;71(2):242–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Doron S et al. Hypogammaglobulinemia in liver transplant recipients: incidence, timing, risk factors, and outcomes. Transplantation. 2006;81(5):697–703.PubMedCrossRefGoogle Scholar
  71. 71.
    Reyes J et al. Current status of intestinal transplantation in children. J Pediatr Surg. 1998;33(2):243–54.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Goulet O et al. Small bowel transplantation alone or with the liver in children: changes by using FK506. Transplant Proc. 1998;30(4):1569–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Langnas AN et al. Intestinal transplantation: a single-center experience. Transplant Proc. 2000;32(6):1228.PubMedCrossRefGoogle Scholar
  74. 74.
    Farmer DG et al. Improved outcome after intestinal transplantation: an 8-year, single-center experience. Transplant Proc. 2000;32(6):1233–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Jan D et al. Up-to-date evolution of small bowel transplantation in children with intestinal failure. J Pediatr Surg. 1999;34(5):841–3. discussion 843–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Horslen S et al. Initial experience using rapamycin immunosuppression in pediatric intestinal transplant recipients. Transplant Proc. 2002;34(3):934–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Lauro A et al. Rejection episodes and 3-year graft survival under sirolimus and tacrolimus treatment after adult intestinal transplantation. Transplant Proc. 2007;39(5):1629–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Andres AM et al. The use of sirolimus as a rescue therapy in pediatric intestinal transplant recipients. Pediatr Transplant. 2010;14(7):931–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Abu-Elmagd K et al. The efficacy of daclizumab for intestinal transplantation: preliminary report. Transplant Proc. 2000;32(6):1195–6.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Pinna AD et al. Induction therapy for clinical intestinal transplantation: comparison of four different regimens. Transplant Proc. 2000;32(6):1193–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Farmer DG et al. Pretransplant predictors of survival after intestinal transplantation: analysis of a single-center experience of more than 100 transplants. Transplantation. 2010;90(12):1574–80.PubMedCrossRefGoogle Scholar
  82. 82.
    Watson MJ et al. Renal function impacts outcomes after intestinal transplantation. Transplantation. 2008;86(1):117–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Sivaprakasam, R., et al., Preoperative comorbidity correlates inversely with survival after intestinal and multivisceral transplantation in adults. J Transplant, 2013. 2013: p. 202410.Google Scholar
  84. 84.
    Venick RS et al. Long-term nutrition and predictors of growth and weight gain following pediatric intestinal transplantation. Transplantation. 2011;92(9):1058–62.PubMedGoogle Scholar
  85. 85.
    OPTN/SRTR 2012 Annual Data Report: Intestine. Scientific Registry of Transplant Recipients. [http://srtr.transplant.hrsa.gov/annual_reports/2012/pdf/04_intestine_13.pdf] Accessed [October 2014].

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chandrashekhar A. Kubal
    • 1
  • Richard S. Mangus
    • 1
  • A. Joseph Tector
    • 1
  1. 1.Transplant Division, Department of SurgeryIndiana University School of MedicineIndianapolisUSA

Personalised recommendations