Skip to main content

Advertisement

Log in

When Can Nutritional Therapy Impact Liver Disease?

  • Nutrition and Obesity (S McClave, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

This article reviews the current literature regarding nutritional therapy in liver disease, with an emphasis on patients progressing to liver failure as well as surgical patients. Mechanisms of malnutrition and sarcopenia in liver failure patients as well as nutritional assessment, nutritional requirements of this patient population, and goals and methods of therapy are discussed. Additionally, recommendations for feeding, micronutrient, branched chain amino acid supplementation, and the use of pre- and probiotics are included. The impact of these methods can have on patients with advanced disease and those undergoing surgical procedures will be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. O’Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes. Lancet. 1993;342:273–5.

    Article  PubMed  Google Scholar 

  2. Caregaro L, Alberino F, Amodio P, et al. Malnutrition in alcoholic and virus-related cirrhosis. Am J Clin Nutr. 1996;63:602–9.

    PubMed  CAS  Google Scholar 

  3. Dudrick SJ, Kavic SM. Hepatobiliary nutrition: history and future. J Hepatobiliary Pancreat Surg. 2002;9:459–68.

    Article  PubMed  Google Scholar 

  4. Italian Multicentre Cooperative Project on Nutrition in Liver Cirrhosis. Nutritional status in cirrhosis. J Hepatol. 1994;21:317–25.

    Article  Google Scholar 

  5. Carvalho L, Parise ER. Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gastroenterol. 2006;43:269–74.

    Article  PubMed  Google Scholar 

  6. Altamirano J, Fagundes C, Dominguez M, et al. Acute kidney injury is an early predictor of mortality for patients with alcoholic hepatitis. Clin Gastroenterol Hepatol. 2012;10:65–71.

    Article  PubMed  Google Scholar 

  7. Tan BH, Birdsell LA, Martin L, et al. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res. 2009;15:6973–9.

    Article  PubMed  CAS  Google Scholar 

  8. van Vledder MG, Levolger S, Ayez N, et al. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg. 2012;99:550–7.

    Article  PubMed  Google Scholar 

  9. Sabel MS, Lee J, Cai S, et al. Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann Surg Oncol. 2011;18:3579–85.

    Article  PubMed  Google Scholar 

  10. Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–73. This study demonstrated only a very low level of association between scoring systems for liver disease and sarcopenia, as measured by CT scan at the third vertebral level. Length of survival and mortality were worse in patients with sarcopenia. A question raised by this study is whether sarcopenia should be included in conventional models of liver disease.

    Article  PubMed  Google Scholar 

  11. Englesbe MJ, Patel SP, He K, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg I. Summary comments: epidemiological and methodological problems in determining nutritional status in older persons. Am J Clin Nutr. 1989;50:1231–3.

    Google Scholar 

  13. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769–74.

    Article  PubMed  Google Scholar 

  14. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–64.

    Article  PubMed  Google Scholar 

  16. Rosenberg I. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990S–1S.

    PubMed  CAS  Google Scholar 

  17. Figueiredo FA, Dickson ER, Pasha TM, et al. Utility of standard nutritional parameters in detecting body cell mass depletion in patients with end-stage liver disease. Liver Transpl. 2000;6:575–81.

    Article  PubMed  CAS  Google Scholar 

  18. Sam J, Nguyen GC. Protein-calorie malnutrition as a prognostic indicator of mortality among patients hospitalized with cirrhosis and portal hypertension. Liver Int. 2009;29:1396–402.

    Article  PubMed  Google Scholar 

  19. Thuluvath PJ, Triger DR. Evaluation of nutritional status by using anthropometry in adults with alcoholic and nonalcoholic liver disease. Am J Clin Nutr. 1994;60:269–73.

    PubMed  CAS  Google Scholar 

  20. Morgan MY, Madden AM, Jennings G, et al. Two-component models are of limited value for the assessment of body composition in patients with cirrhosis. Am J Clin Nutr. 2006;84:1151–62.

    PubMed  CAS  Google Scholar 

  21. Morgan MY, Madden AM, Soulsby CT, et al. Derivation and validation of a new global method for assessing nutritional status in patients with cirrhosis. Hepatology. 2006;44:823–35.

    Article  PubMed  Google Scholar 

  22. Mourtzakis M, Prado CM, Lieffers JR, et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006.

    Article  PubMed  Google Scholar 

  23. Norman K, Stobaus N, Pirlich M, et al. Bioelectrical phase angle and impedance vector analysis—clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31:854–61.

    Article  PubMed  Google Scholar 

  24. Tandon P, Ney M, Irwin I, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 2012;18:1209–16. A well done study describing the incidence of sarcopenia in the pre-transplant patient population which could serve as a model for future research into the role sarcopenia should play in determining organ allocation.

    Article  PubMed  Google Scholar 

  25. Krell RW, Kaul DR, Martin AR, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19:1396–402.

    Article  PubMed  Google Scholar 

  26. Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21:113–7.

    Article  PubMed  Google Scholar 

  27. Juakiem W, Torres DM, Harrison SA. Nutrition in cirrhosis and chronic liver disease. Clin Liver Dis. 2014;18:179–90.

    Article  PubMed  Google Scholar 

  28. Mathan LKE-SS. Krause’s food nutrition and diet therapy. Philadelphia: WB Saunders; 2000.

    Google Scholar 

  29. Plauth M, Cabre E, Riggio O, et al. ESPEN guidelines on enteral nutrition: liver disease. Clin Nutr. 2006;25:285–94.

    Article  PubMed  CAS  Google Scholar 

  30. Hasse J, Strong S, Gorman MA, et al. Subjective global assessment: alternative nutrition-assessment technique for liver-transplant candidates. Nutrition. 1993;9:339–43.

    PubMed  CAS  Google Scholar 

  31. Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in cachexia. Physiol Behav. 2010;100:478–89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Aqel BA, Scolapio JS, Dickson RC, et al. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin Gastroenterol Hepatol. 2005;3:1095–100.

    Article  PubMed  Google Scholar 

  33. Plauth M, Schutz ET. Cachexia in liver cirrhosis. Int J Cardiol. 2002;85:83–7.

    Article  PubMed  Google Scholar 

  34. Cheung K, Lee SS, Raman M. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol. 2012;10:117–25.

    Article  PubMed  Google Scholar 

  35. Tsiaousi ET, Hatzitolios AI, Trygonis SK, et al. Malnutrition in end stage liver disease: recommendations and nutritional support. J Gastroenterol Hepatol. 2008;23:527–33.

    Article  PubMed  Google Scholar 

  36. Vlahcevic ZR, Buhac I, Farrar JT, et al. Bile acid metabolism in patients with cirrhosis. I. Kinetic aspects of cholic acid metabolism. Gastroenterology. 1971;60:491–8.

    PubMed  CAS  Google Scholar 

  37. Dam G, Ott P, Aagaard NK, et al. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab Brain Dis. 2013;28:217–20.

    Article  PubMed  CAS  Google Scholar 

  38. American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors. Clinical guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients, 2009. JPEN J Parenter Enteral Nutr. 2009;33:255–9.

    Article  Google Scholar 

  39. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012;27:430–41.

    Article  PubMed  CAS  Google Scholar 

  40. Vaisman N, Katzman H, Carmiel-Haggai M, et al. Breakfast improves cognitive function in cirrhotic patients with cognitive impairment. Am J Clin Nutr. 2010;92:137–40.

    Article  PubMed  CAS  Google Scholar 

  41. Matos C, Porayko MK, Francisco-Ziller N, et al. Nutrition and chronic liver disease. J Clin Gastroenterol. 2002;35:391–7.

    Article  PubMed  CAS  Google Scholar 

  42. Hammand A, Kaido T, Uemoto S. Perioperative nutritional therapy in liver transplantation. Surg Today. 2014. doi:10.1007/s00595-014-0842-3.

    Google Scholar 

  43. Pescovitz MD, Mehta PL, Jindal RM, et al. Zinc deficiency and its repletion following liver transplantation in humans. Clin Transplant. 1996;10:256–60.

    PubMed  CAS  Google Scholar 

  44. Munoz SJ, Deems RO, Moritz MJ, et al. Hyperlipidemia and obesity after orthotopic liver transplantation. Transplant Proc. 1991;23:1480–3.

    PubMed  CAS  Google Scholar 

  45. Janczewska I, Ericzon BG, Eriksson LS. Influence of orthotopic liver transplantation on serum vitamin A levels in patients with chronic liver disease. Scand J Gastroenterol. 1995;30:68–71.

    Article  PubMed  CAS  Google Scholar 

  46. Ozaki N, Ringe B, Gubernatis G, et al. Changes in energy substrates in relation to arterial ketone body ratio after human orthotopic liver transplantation. Surgery. 1993;113:403–9.

    PubMed  CAS  Google Scholar 

  47. Palmer M, Schaffner F, Thung SN. Excessive weight gain after liver transplantation. Transplantation. 1991;51:797–800.

    Article  PubMed  CAS  Google Scholar 

  48. Holt RI, Broide E, Buchanan CR, et al. Orthotopic liver transplantation reverses the adverse nutritional changes of end-stage liver disease in children. Am J Clin Nutr. 1997;65:534–42.

    PubMed  CAS  Google Scholar 

  49. Canzanello VJ, Schwartz L, Taler SJ, et al. Evolution of cardiovascular risk after liver transplantation: a comparison of cyclosporine A and tacrolimus (FK506). Liver Transpl Surg. 1997;3:1–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hasse J. Liver transplantation: the benefits of nutrition therapy in the liver transplant patient. Liver Transpl. 1996;2:81–100.

    Google Scholar 

  51. Shanbhogue RL, Bistrian BR, Jenkins RL, et al. Increased protein catabolism without hypermetabolism after human orthotopic liver transplantation. Surgery. 1987;101:146–9.

    PubMed  CAS  Google Scholar 

  52. Kaido T, Ogawa K, Fujimoto Y, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13:1549–56. This work investigated the impact of sarcopenia and immunonutrition in liver transplant patients. Lean muscle mass was evaluated prior to transplant by BIA, and patients were fed immunomodulating formulas early in the perioperative period. Low lean muscle mass was independently associated with mortality, but the addition of early immunomodulating enteral feeds increased survival in patients with low skeletal mass. These results could allow for improved recipient selection, as well as illustrates the impact immunonutrition could play in these complex patients.

    Article  PubMed  CAS  Google Scholar 

  53. Kaido T, Mori A, Ogura Y, et al. Impact of enteral nutrition using a new immuno-modulating diet after liver transplantation. Hepatogastroenterology. 2010;57:1522–5.

    PubMed  CAS  Google Scholar 

  54. Kaido T, Mori A, Oike F, et al. Impact of pretransplant nutritional status in patients undergoing liver transplantation. Hepatogastroenterology. 2010;57:1489–92.

    PubMed  Google Scholar 

  55. Bode JC, Hanisch P, Henning H, et al. Hepatic zinc content in patients with various stages of alcoholic liver disease and in patients with chronic active and chronic persistent hepatitis. Hepatology. 1988;8:1605–9.

    Article  PubMed  CAS  Google Scholar 

  56. Hayashi M, Ikezawa K, Ono A, et al. Evaluation of the effects of combination therapy with branched-chain amino acid and zinc supplements on nitrogen metabolism in liver cirrhosis. Hepatol Res. 2007;37:615–9.

    Article  PubMed  CAS  Google Scholar 

  57. Takuma Y, Nouso K, Makino Y, et al. Clinical trial: oral zinc in hepatic encephalopathy. Aliment Pharmacol Ther. 2010;32:1080–90.

    Article  PubMed  CAS  Google Scholar 

  58. Loser C, Folsch UR. Guidelines for treatment with percutaneous endoscopic gastrostomy. German Society of Digestive and Metabolic Diseases. Z Gastroenterol. 1996;34:404–8.

    PubMed  CAS  Google Scholar 

  59. Plank LD, McCall JL, Gane EJ, et al. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: a pilot study of safety and efficacy. Clin Nutr. 2005;24:288–96.

    Article  PubMed  Google Scholar 

  60. Als-Nielsen B, Gluud LL, Gluud C. Nonabsorbable disaccharides for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;2, CD003044.

    PubMed  Google Scholar 

  61. Agrawal A, Sharma BC, Sharma P, et al. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am J Gastroenterol. 2012;107:1043–50.

    Article  PubMed  CAS  Google Scholar 

  62. Amodio P, Bemeur C, Butterworth R, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58:325–36.

    Article  PubMed  CAS  Google Scholar 

  63. McGee RG, Bakens A, Wiley K et al. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev 2011;CD008716.

  64. Holecek M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition. 2010;26:482–90.

    Article  PubMed  CAS  Google Scholar 

  65. Paul HS, Adibi SA. Activation of hepatic branched chain alpha-keto acid dehydrogenase by a skeletal muscle factor. J Biol Chem. 1982;257:12581–8.

    PubMed  CAS  Google Scholar 

  66. Damuni Z, Merryfield ML, Humphreys JS, et al. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney. Proc Natl Acad Sci U S A. 1984;81:4335–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther. 2012;92:321–31.

    Article  PubMed  CAS  Google Scholar 

  68. Skowronska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res. 2012;21:236–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Yamamoto M, Iwasa M, Matsumura K, et al. Improvement of regional cerebral blood flow after oral intake of branched-chain amino acids in patients with cirrhosis. World J Gastroenterol. 2005;11:6792–9.

    PubMed  CAS  Google Scholar 

  70. Marchesini G, Bianchi G, Merli M, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

    Article  PubMed  CAS  Google Scholar 

  71. Muto Y, Sato S, Watanabe A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3:705–13.

    Article  PubMed  CAS  Google Scholar 

  72. Nakaya Y, Okita K, Suzuki K, et al. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition. 2007;23:113–20.

    Article  PubMed  CAS  Google Scholar 

  73. Metcalfe EL, Avenell A, Fraser A. Branched-chain amino acid supplementation in adults with cirrhosis and porto-systemic encephalopathy: systemic review. Clin Nutr. 2014. doi:10.1016/j.clnu.2014.02.011.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Matthew C. Bozeman, Matthew V. Benns, Stephen A. McClave, Keith R. Miller, and Christopher M. Jones declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Jones.

Additional information

This article is part of the Topical Collection on Nutrition and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozeman, M.C., Benns, M.V., McClave, S.A. et al. When Can Nutritional Therapy Impact Liver Disease?. Curr Gastroenterol Rep 16, 411 (2014). https://doi.org/10.1007/s11894-014-0411-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-014-0411-3

Keywords

Navigation