Interstitial Cells of Cajal: Update on Basic and Clinical Science

Neuromuscular Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromuscular Disorders of the Gastrointestinal Tract

Abstract

The basic science and clinical interest in the networks of interstitial cells of Cajal (ICC) keep growing, and here, research from 2010 to mid-2013 is highlighted. High-resolution gastrointestinal manometry and spatiotemporal mapping are bringing exciting new insights into motor patterns, their function and their myogenic and neurogenic origins, as well as the role of ICC. Critically important knowledge is emerging on the partaking of PDGFRα+ cells in ICC pacemaker networks. Evidence is emerging that ICC and PDGFRα+ cells have unique direct roles in muscle innervation. Chronic constipation is associated with loss and injury to ICC, which is stimulating extensive research into maintenance and repair of ICC after injury. In gastroparesis, high-resolution electrical and mechanical studies are beginning to elucidate the pathophysiological role of ICC and the pacemaker system in this condition. Receptors and ion channels that play a role in ICC function are being discovered and characterized, which paves the way for pharmacological interventions in gut motility disorders through ICC.

Keywords

Interstitial cells of Cajal (ICC) PDGFRα+ Enteric nervous system (ENS) Chronic constipation Gastroparesis Inflammation Colon motility Pacemaker cells Nitric oxide Guanylate cyclase Gastroparesis Chronic constipation Gut transit Gastrointestinal transit Ion channels Receptors 

Abbreviations

ICC

interstitial cells of Cajal

ICC-MP

ICC associated with the myenteric plexus (also called ICC-MY and ICC-AP)

ICC-DMP

ICC associated with the deep muscular plexus (small intestine)

ICC-SMP

ICC associated with the submuscular plexus (colon)

ICC-IM

Intramuscular ICC

c-Kit

tyrosine-protein kinase Kit or CD117

Ano1

Anoctamin-1

ENS

Enteric nervous system

PDGFRα+ cells

Platelet-derived growth factor receptor-alpha positive cells (specialized fibroblast-like cells)

LDC

Long Distance Contraction (colon)

RPMC

Rhythmic Propulsive Motor Complex (colon)

HAPC

High Amplitude Propulsive Contraction (an RPMC identified in human colon with amplitude > 100 mm Hg)

5HT

5-hydroxy tryptamine

Supplementary material

ESM 1

(AVI 3429 kb)

ESM 2

(AVI 7090 kb)

ESM 3

(WMV 2015 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011;31:8998–9009.CrossRefPubMedGoogle Scholar
  2. 2.
    •• Groneberg D, Konig P, Lies B, Jager R, Seidler B, Klein S, et al. Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology. 2013. doi:10.1053/j.gastro.2013.03.042. This study is of critical importance. Therefore, it should be repeated by another lab, and the differences between direct muscle innervation and innervation via ICC should be further investigated.Google Scholar
  3. 3.
    Groneberg D, Konig P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology. 2011;140:1608–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility–insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol. 2012;9:633–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Powley TL, Gilbert JM, Baronowsky EA, Billingsley CN, Martin FN, Phillips RJ. Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease? Neurogastroenterol Motil. 2012;24:e526–37.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    • Powley TL, Phillips RJ. Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience. 2011;186:188–200. Important insights into the role of ICC in mechano-sensory transduction.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil. 2008;20:69–79.PubMedGoogle Scholar
  8. 8.
    Huizinga JD, Zarate N, Farrugia G. Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137:1548–56.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Bernardini N, Segnani C, Ippolito C, De Giorgio R, Colucci R, Faussone-Pellegrini MS, et al. Immunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis. J Cell Mol Med. 2012;16:318–27.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang XY, Zarate N, Soderholm JD, Bourgeois JM, Liu LW, Huizinga JD. Ultrastructural injury to interstitial cells of Cajal and communication with mast cells in Crohn’s disease. Neurogastroenterol Motil. 2007;19:349–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Rumessen JJ, Vanderwinden JM, Horn T. Crohn’s disease: ultrastructure of interstitial cells in colonic myenteric plexus. Cell Tissue Res. 2011;344:471–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Rumessen JJ, Vanderwinden JM, Horn T. Crohn’s disease of the colon: ultrastructural changes in submuscular interstitial cells of Cajal. Cell Tissue Res. 2011;343:421–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Kashyap P, Gomez-Pinilla PJ, Pozo MJ, Cima RR, Dozois EJ, Larson DW, et al. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol Motil. 2011;23:760–5.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Bettolli M, De Carli C, Cornejo-Palma D, Jolin-Dahel K, Wang XY, Huizinga J, et al. Interstitial cell of Cajal loss correlates with the degree of inflammation in the human appendix and reverses after inflammation. J Pediatr Surg. 2012;47:1891–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Faussone-Pellegrini MS, Grover M, Pasricha PJ, Bernard CE, Lurken MS, Smyrk TC, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med. 2012;16:1573–81.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Grover M, Bernard CE, Pasricha PJ, Lurken MS, Faussone-Pellegrini MS, Smyrk TC, et al. Clinical-histological associations in gastroparesis: results from the Gastroparesis Clinical Research Consortium. Neurogastroenterol Motil. 2012;24:531–9. e249. Multicenter study to find correlates in diabetic and idiopathic gastroparesis between ICC injury, inflammation, nerve injury, and function.CrossRefPubMedGoogle Scholar
  17. 17.
    Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140:1575–85.e8.CrossRefPubMedGoogle Scholar
  18. 18.
    • O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJ, Windsor JA, et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology. 2012;143:589–98.e1.. Important insights into abnormal electrical activity in the stomach of gastroparesis patients.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Kim ER, Kim KM, Lee JY, Joo M, Kim S, Noh JH, et al. The clue of Interstitial Cell of Cajalopathy (ICCpathy) in human diabetic gastropathy: the ultrastructural and electrical clues of ICCpathy in human diabetic gastropathy. Exp Toxicol Pathol. 2012;64:521–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Jabari S, AB da Silveira, EC de Oliveira, K Quint, A Wirries, W Neuhuber, A Brehmer. Interstitial cells of Cajal: crucial for the development of megacolon in human Chagas disease? Colorectal Dis 2013;15:592–8.Google Scholar
  21. 21.
    Adad SJ, Silva GB, Jammal AA. The significantly reduced number of interstitial cells of Cajal in chagasic megacolon (CM) patients might contribute to the pathophysiology of CM. Virchows Arch. 2012;461:385–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Gfroerer S, Metzger R, Fiegel H, Ramachandran P, Rolle U. Differential changes in intrinsic innervation and interstitial cells of Cajal in small bowel atresia in newborns. World J Gastroenterol. 2010;16:5716–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Tander B, Bicakci U, Sullu Y, Rizalar R, Ariturk E, Bernay F, et al. Alterations of Cajal cells in patients with small bowel atresia. J Pediatr Surg. 2010;45:724–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Jin QH, Shen HX, Wang H, Shou QY, Liu Q. Curcumin improves expression of SCF/c-kit through attenuating oxidative stress and NF-kappaB activation in gastric tissues of diabetic gastroparesis rats. Diabetol Metab Syndr. 2013;5:12.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Mogami S, H Suzuki, H Tsugawa, S Fukuhara, T Hibi. Impaired heme oxygenase-1 induction in the gastric antrum induces disruption of the interstitial cells of Cajal network in a rat model of streptozotocin-induced diabetes. Neurogastroenterol Motil 2013Google Scholar
  26. 26.
    Lammers WJ, HM Al-Bloushi, SA Al-Eisae, FA Al-Dhaheri, BS Stephen, R John, S Dhanasekaran, SM Karam. Slow wave propagation and ICC plasticity in the small intestine of diabetic rats. Exp Physiol 2011Google Scholar
  27. 27.
    Domenech A, Pasquinelli G, De Giorgio R, Gori A, Bosch F, Pumarola M, et al. Morphofunctional changes underlying intestinal dysmotility in diabetic RIP-I/hIFNbeta transgenic mice. Int J Exp Pathol. 2011;92:400–12.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Choi KM, Gibbons SJ, Nguyen TV, Stoltz GJ, Lurken MS, Ordog T, et al. Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology. 2008;135:2055–64. 2064 e1.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Huizinga JD. MS Faussone-Pellegrini About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract. J Cell Mol Med. 2005;9:468–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Faussone-Pellegrini MS, Cortesini C, Romagnoli P. The ultrastructure of the muscle coat of the human gasto-esophageal junction, with special reference to “interstitial cells of Cajal”. Front Auton Neurosci. 2013;7:49.Google Scholar
  31. 31.
    Huizinga JD, Chen JH, Mikkelsen HB, Wang XY, Parsons SP, Zhu YF. Interstitial cells of Cajal, from structure to function. Front Neurosci. 2013;7:43.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Wang XY, Paterson C, Huizinga JD. Cholinergic and nitrergic innervation of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil. 2003;15:531–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Shi LL, Liu MD, Chen M, Zou XP. Involvement of interstitial cells of Cajal in experimental severe acute pancreatitis in rats. World J Gastroenterol. 2013;19:2179–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Hoshino M, Omura N, Yano F, Tsuboi K, Kashiwagi H, Yanaga K. Immunohistochemical study of the muscularis externa of the esophagus in achalasia patients. Dis Esophagus. 2013;26:14–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Knowles CH, Farrugia G. Gastrointestinal neuromuscular pathology in chronic constipation. Best Pract Res Clin Gastroenterol. 2011;25:43–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Gomez-Pinilla PJ, Gibbons SJ, Sarr MG, Kendrick ML, Shen KR, Cima RR, et al. Changes in interstitial cells of cajal with age in the human stomach and colon. Neurogastroenterol Motil. 2011;23:36–44.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    • Huizinga JD, Martz S, Gill V, Wang X-Y, Jimenez M, Parsons S. Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci. 2011;5(93):1–12. This study shows howTTX-sensitivityof a motor pattern does not exclude myogenic control.Google Scholar
  38. 38.
    • Costa M, KN Dodds, L Wiklendt, NJ Spencer, SJ Brookes, PG Dinning. Neurogenic and myogenic motor activity in the colon of the guinea-pig, mouse, rabbit and rat. Am J Physiol Gastrointest Liver Physiol. 2013;305:G749–59. Important evidence and discussion on neural versus myogenic control of colonic motility.Google Scholar
  39. 39.
    Arkwright JW, Dickson A, Maunder SA, Blenman NG, Lim J, O’Grady G, et al. The effect of luminal content and rate of occlusion on the interpretation of colonic manometry. Neurogastroenterol Motil. 2013;25:e52–9.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Dinning PG, Costa M, Brookes SJ, Spencer NJ. Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon. Am J Physiol Gastrointest Liver Physiol. 2012;303:G83–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Lentle RG, Janssen PW, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008;178:257–68.CrossRefPubMedGoogle Scholar
  42. 42.
    • Dickson EJ, Heredia DJ, McCann CJ, Hennig GW, Smith TK. The mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G222–32. Important study on neural control of colonic motility.CrossRefPubMedGoogle Scholar
  43. 43.
    • Carbone SE, Dinning PG, Costa M, Spencer NJ, Brookes SJ, Wattchow DA. Ascending excitatory neural pathways modulate slow phasic myogenic contractions in the isolated human colon. Neurogastroenterol Motil. 2013;25:670–6. This paper gives important insights into the origins of phasic contractions in the human colon using in vitro techniques.CrossRefPubMedGoogle Scholar
  44. 44.
    Davidson JB, O’Grady G, Arkwright JW, Zarate N, Scott SM, Pullan AJ, et al. Anatomical registration and three-dimensional visualization of low and high-resolution pan-colonic manometry recordings. Neurogastroenterol Motil. 2011;23:387–91.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    • Chen JH, Zhang Q, Yu Y, Li K, Liao H, Jiang LS, et al. Neurogenic and myogenic properties of pan-colonic motor patterns and their spatiotemporal organization in rats. PLoS ONE. 2013;8:e60474. This paper provides insight into the myogenic and ICC-related components of TTX-sensitive and -insensitive motor patterns in the rat colon.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M. Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol. 2001;281:G255–66.PubMedGoogle Scholar
  47. 47.
    Yoneda S, Fukui H, Takaki M. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil. 2004;16:621–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Gil V, SP Parsons, D Gallego, JD Huizinga, M Jimenez. Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 2013Google Scholar
  49. 49.
    Huizinga JD, Waterfall WE. Electrical correlate of circumferential contractions in human colonic circular muscle. Gut. 1988;29:10–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Spencer NJ, Kyloh M, Wattchow DA, Thomas A, Sia TC, Brookes SJ, et al. Characterization of motor patterns in isolated human colon: are there differences in patients with slow-transit constipation? Am J Physiol Gastrointest Liver Physiol. 2012;302:G34–43.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh S, Heady S, Coss-Adame E, Rao SS. Clinical utility of colonic manometry in slow transit constipation. Neurogastroenterol Motil. 2013;25:487–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhu YF, X-Y Wang, B-J Lowie, S Parsons, W E., W Kunze, A Pawelka, JD Huizinga Enteric sensory neurons communicate with interstitial cells of Cajal to affect pacemaker activity in the small intestine. Pflugers Arch 2013; In press.Google Scholar
  53. 53.
    Gabella G. Innervation of the gastrointestinal tract. Int Rev Cytol. 1979;59:129–93.CrossRefPubMedGoogle Scholar
  54. 54.
    Kim TW, Koh SD, Ordog T, Ward SM, Sanders KM. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J Physiol. 2003;546:415–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Ramon y Cajal S Histologie du systéme nerveux de l’ homme et des vertébrés. 1911 2Google Scholar
  56. 56.
    Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93:12008–13.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20:1393–403.PubMedGoogle Scholar
  58. 58.
    Huizinga JD, Liu LW, Fitzpatrick A, White E, Gill S, Wang XY, et al. Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G589–94.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang RX, Wang XY, Chen D, Huizinga JD. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Neurogastroenterol Motil. 2011;23:e356–71.CrossRefPubMedGoogle Scholar
  60. 60.
    Duffy AM, Cobine CA, Keef KD. Changes in neuromuscular transmission in the W/W(v) mouse internal anal sphincter. Neurogastroenterol Motil. 2012;24:e41–55.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    • Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 2013;4:1630. This paper contributes to our understanding of direct innervation to smooth muscle and innervation mediated by ICC using genetically modified mice.CrossRefPubMedGoogle Scholar
  62. 62.
    Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA. Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol. 2013;591:2971–86.CrossRefPubMedGoogle Scholar
  63. 63.
    Faussone-Pellegrini MS, Gay J, Vannucchi MG, Corsani L, Fioramonti J. Alterations of neurokinin receptors and interstitial cells of Cajal during and after jejunal inflammation induced by Nippostrongylus brasiliensis in the rat. Neurogastroenterol Motil. 2002;14:83–95.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang XY, Vannucchi MG, Nieuwmeyer F, Ye J, Faussone-Pellegrini MS, Huizinga JD. Changes in interstitial cells of Cajal at the deep muscular plexus are associated with loss of distention-induced burst-type muscle activity in mice infected by Trichinella spiralis. Am J Pathol. 2005;167:437–53.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang XY, Berezin I, Mikkelsen HB, Der T, Bercik P, Collins SM, et al. Pathology of interstitial cells of Cajal in relation to inflammation revealed by ultrastructure but not immunohistochemistry. Am J Pathol. 2002;160:1529–40.CrossRefPubMedGoogle Scholar
  66. 66.
    Pokkunuri V, Pimentel M, Morales W, Jee SR, Alpern J, Weitsman S, et al. Role of cytolethal distending toxin in altered stool form and bowel phenotypes in a rat model of post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:434–42.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Lorincz A, Redelman D, Horvath VJ, Bardsley MR, Chen H, Ordog T. Progenitors of interstitial cells of cajal in the postnatal murine stomach. Gastroenterology. 2008;134:1083–93.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Stanich JE, Gibbons SJ, Eisenman ST, Bardsley MR, Rock JR, Harfe BD, et al. Ano1 as a regulator of proliferation. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1044–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ, et al. Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(-) channel, Ano1. Biochem Biophys Res Commun. 2012;427:248–53.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Ordog T, Syed SA, Hayashi Y, Asuzu DT. Epigenetics and chromatin dynamics: a review and a paradigm for functional disorders. Neurogastroenterol Motil. 2012;24:1054–68.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Camilleri M, Grover M, Farrugia G. What are the important subsets of gastroparesis? Neurogastroenterol Motil. 2012;24:597–603.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    • Grover M, Bernard CE, Pasricha PJ, Parkman HP, Abell TL, Nguyen LA, et al. Platelet-derived growth factor receptor alpha (PDGFRalpha)-expressing “fibroblast-like cells” in diabetic and idiopathic gastroparesis of humans. Neurogastroenterol Motil. 2012;24:844–52. Important information on PDGFRα+ positive cells in the human gastroparesis.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    O’Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJ, Asirvatham SJ, et al. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil. 2012;24:e299–312.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Lowie BJ, Wang XY, White EJ, Huizinga JD. On the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol. 2011;301:G835–45.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee J, Kim YD, Park CG, Kim MY, Chang IY, Zuo DC, et al. Neurotensin modulates pacemaker activity in interstitial cells of Cajal from the mouse small intestine. Mol Cells. 2012;33:509–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Park CG, Kim YD, Kim MY, Koh JW, Jun JY, Yeum CH, et al. Effects of prostaglandin F2 alpha on small intestinal interstitial cells of Cajal. World J Gastroenterol. 2011;17:1143–51.CrossRefPubMedGoogle Scholar
  77. 77.
    Liu HN, Ohya S, Nishizawa Y, Sawamura K, Iino S, Syed MM, et al. Serotonin augments gut pacemaker activity via 5-HT3 receptors. PLoS One. 2011;6:e24928.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Si X, Huang L, Gong Y, Lu J, Lin L. Role of calcium in activation of hyperpolarization-activated cyclic nucleotide-gated channels caused by cholecystokinin octapeptide in interstitial cells of cajal. Digestion. 2012;85:266–75.CrossRefPubMedGoogle Scholar
  79. 79.
    Gong YY, Si XM, Lin L, Lu J. Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal. World J Gastroenterol. 2012;18:7184–93.CrossRefPubMedGoogle Scholar
  80. 80.
    Lee JH, Kim SY, Kwon YK, Kim BJ, So I. Characteristics of the cholecystokinin-induced depolarization of pacemaking activity in cultured interstitial cells of cajal from murine small intestine. Cell Physiol Biochem. 2013;31:542–54.CrossRefPubMedGoogle Scholar
  81. 81.
    Kim YD, Han KT, Lee J, Park CG, Kim MY, Shahi PK, et al. Effects of sphingosine-1-phosphate on pacemaker activity of interstitial cells of Cajal from mouse small intestine. Mol Cells. 2013;35:79–86.CrossRefPubMedGoogle Scholar
  82. 82.
    Kim BJ, Kwon YK, Kim E, So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. Korean J Physiol Pharmacol. 2013;17:149–56.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Kim BJ, Chang IY, Choi S, Jun JY, Jeon JH, Xu WX, et al. Involvement of Na(+)-leak channel in substance P-induced depolarization of pacemaking activity in interstitial cells of Cajal. Cell Physiol Biochem. 2012;29:501–10.CrossRefPubMedGoogle Scholar
  84. 84.
    Wright GW, Parsons SP, Huizinga JD. Ca(2+) sensitivity of the maxi chloride channel in interstitial cells of Cajal. Neurogastroenterol Motil. 2012;24:e221–34.CrossRefPubMedGoogle Scholar
  85. 85.
    Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009;587:4887–904.CrossRefPubMedGoogle Scholar
  86. 86.
    Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1370–81.CrossRefPubMedGoogle Scholar
  87. 87.
    Parsons SP, JD Huizinga. Gating of maxi channels observed from pseudo phase portraits. Am J Physiol Cell Physiol 2013Google Scholar
  88. 88.
    Parsons SP, Kunze WA, Huizinga JD. Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus. Am J Physiol Cell Physiol. 2012;302:C1055–69.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Farncombe Family Digestive Health Research InstituteMcMaster UniversityHamiltonCanada
  2. 2.Department of Gastroenterology & HepatologyRenmin Hospital of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations