Gas and the Microbiome

  • Mark PimentelEmail author
  • Ruchi Mathur
  • Christopher Chang
Neuromuscular Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromuscular Disorders of the Gastrointestinal Tract


Humans are host to trillions of microbial colonizers that contribute significantly to human health and disease. Advances in sequencing and other technologies have facilitated dramatic advances in our knowledge of the types and number of organisms colonizing different areas of the body, and while our knowledge of the roles played by the different bacteria, fungi, and archaea has increased dramatically, there remains much to uncover. The microbes that colonize the human gut contribute to vitamin biosynthesis, immune modulation, and the breakdown of otherwise indigestible foods for nutrient harvest. Bacteria and archaea produce various gases as by-products of fermentation, and it is becoming increasingly understood that these gases have both direct and indirect effects on the gut, and may also be used as diagnostic markers, e.g., hydrogen production as measured by breath testing can be used to diagnose bacterial overgrowth. In this article, we review the roles and effects of hydrogen (H2), methane (CH4) and hydrogen sulfide (H2S) in the human gut.


Intestinal gas Microbiome 


Compliance with Ethics Guidelines

Conflict of Interest

Mark Pimentel, Ruchi Mathur, and Christopher Chang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    The Gut Microbiota. Science (special issue). 2012;336.Google Scholar
  2. 2.
    Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.Google Scholar
  3. 3.
    A framework for human microbiome research. Nature. 2012;486:215–21.Google Scholar
  4. 4.
    Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010;55:2135–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Conly JM, Stein K, Worobetz L, Rutledge-Harding S. The contribution of vitamin K2 (menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K. Am J Gastroenterol. 1994;89:915–23.PubMedGoogle Scholar
  8. 8.
    Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science N Y. 2006;312:1355–9.CrossRefGoogle Scholar
  9. 9.
    Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10:311–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Salzman NH. Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol. 2011;14:99–105.PubMedCrossRefGoogle Scholar
  14. 14.
    DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008;83:460–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc. 2010;69:434–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Cani PD, Delzenne NM. The gut microbiome as therapeutic target. Pharmacol Ther. 2011;130:202–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Kerckhoffs AP, Samsom M, van der Rest ME, et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol. 2009;15:2887–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Kerckhoffs AP, Visser MR, Samsom M, et al. Critical evaluation of diagnosing bacterial overgrowth in the proximal small intestine. J Clin Gastroenterol. 2008;42:1095–102.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam. 2012;2012:151085.PubMedGoogle Scholar
  25. 25.
    Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7:691–701.PubMedCrossRefGoogle Scholar
  26. 26.
    Gibson GR, Cummings JH, Macfarlane GT. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol. 1988;65:241–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Khoshini R, Dai SC, Lezcano S, Pimentel M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig Dis Sci. 2008;53:1443–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Basseri RJ, Weitsman S, Barlow GM, Pimentel M. Antibiotics for the treatment of irritable bowel syndrome. Gastroenterol Hepatol. 2011;7:455–93.Google Scholar
  29. 29.
    Shah ED, Basseri RJ, Chong K, Pimentel M. Abnormal breath testing in IBS: a meta-analysis. Dig Dis Sci. 2010;55:2441–9.PubMedCrossRefGoogle Scholar
  30. 30.
    King CE, Toskes PP. Small intestine bacterial overgrowth. Gastroenterology. 1979;76:1035–55.PubMedGoogle Scholar
  31. 31.
    Kaye SA, Lim SG, Taylor M, Patel S, Gillespie S, Black CM. Small bowel bacterial overgrowth in systemic sclerosis: detection using direct and indirect methods and treatment outcome. Br J Rheumatol. 1995;34:265–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Soudah HC, Hasler WL, Owyang C. Effect of octreotide on intestinal motility and bacterial overgrowth in scleroderma. N Engl J Med. 1991;325:1461–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Menees SB, Maneerattannaporn M, Kim HM, Chey WD. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2012;107:28–35. quiz 6.PubMedCrossRefGoogle Scholar
  34. 34.
    Weaver GA, Krause JA, Miller TL, Wolin MJ. Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut. 1986;27:698–704.PubMedCrossRefGoogle Scholar
  35. 35.
    Pochart P, Lemann F, Flourie B, Pellier P, Goderel I, Rambaud JC. Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology. 1993;105:1281–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller TL, Wolin MJ. Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol. 1982;131:14–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol. 1981;42:1103–10.PubMedGoogle Scholar
  38. 38.
    McKay LF, Holbrook WP, Eastwood MA. Methane and hydrogen production by human intestinal anaerobic bacteria. Acta Pathol Microbiol Immunol Scand B. 1982;90:257–60.PubMedGoogle Scholar
  39. 39.
    Gibson GR, Cummings JH, Macfarlane GT, et al. Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut. 1990;31:679–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones WJ, Nagle Jr DP, Whitman WB. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987;51:135–77.PubMedGoogle Scholar
  42. 42.
    Pimentel M, Mayer AG, Park S, Chow EJ, Hasan A, Kong Y. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig Dis Sci. 2003;48:86–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–9.PubMedGoogle Scholar
  44. 44.
    Kim G, Deepinder F, Morales W, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012.Google Scholar
  45. 45.
    • Mathur R, Kim G, Morales W, et al. Intestinal Methanobrevibacter smithii but Not Total Bacteria Is Related to Diet-Induced Weight Gain in Rats. Obesity (Silver Spring). 2012;21:748–54. This study demonstrated that methane is linked to a higher BMI.Google Scholar
  46. 46.
    Chatterjee S, Park S, Low K, Kong Y, Pimentel M. The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol. 2007;102:837–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Kunkel D, Basseri RJ, Makhani MD, Chong K, Chang C, Pimentel M. Methane on breath testing is associated with constipation: a systematic review and meta-analysis. Dig Dis Sci. 2011;56:1612–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Attaluri A, Jackson M, Valestin J, Rao SS. Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS. Am J Gastroenterol. 2010;105:1407–11.PubMedCrossRefGoogle Scholar
  49. 49.
    • Pimentel M, Lin HC, Enayati P, et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol. 2006;290:G1089–95. This study showed that methane itself slows gut transit.Google Scholar
  50. 50.
    Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: subanalysis of a double-blind randomized controlled study. Dig Dis Sci. 2006;51:1297–301.PubMedCrossRefGoogle Scholar
  51. 51.
    Pimentel M, Kong Y, Park S. IBS subjects with methane on lactulose breath test have lower postprandial serotonin levels than subjects with hydrogen. Dig Dis Sci. 2004;49:84–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006;103:10011–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Samuel BS, Hansen EE, Manchester JK, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A. 2007;104:10643–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–80.PubMedGoogle Scholar
  56. 56.
    McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39:338–42.PubMedGoogle Scholar
  57. 57.
    Basseri RJ, Basseri B, Pimentel M, et al. Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterol Hepatol. 2012;8:22–8.Google Scholar
  58. 58.
    Mathur R, Amichai M, Chua KS, Mirocha J, Barlow GM, Pimentel M. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat. J Clin Endocrinol Metab. 2013;98:E698–702.PubMedCrossRefGoogle Scholar
  59. 59.
    Cesario V, Di Rienzo TA, Pitocco D, et al. Diabetes and gastrointestinal disorders: the effect of intestinal methane production on glycemic control gastroenterology. 2013;144:S-564.Google Scholar
  60. 60.
    Kim G, Giamarellos-Bourboulis EJ, Chang C, Pyleris E, Pistiki K, Pimentel M. Quantitation of bacteria in duodenal aspirates by qPCR appears to identify viable organisms in IBS gastroenterology. 2013;144:S-908.Google Scholar
  61. 61.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS one. 2009;4:e7125.PubMedCrossRefGoogle Scholar
  62. 62.
    Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36:817–25.CrossRefGoogle Scholar
  63. 63.
    Million M, Angelakis E, Maraninchi M, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (2005) 2013.Google Scholar
  64. 64.
    Liou AP, Paziuk M, Luevano Jr JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.PubMedGoogle Scholar
  65. 65.
    Patil DP, Dhotre DP, Chavan SG, et al. Molecular analysis of gut microbiota in obesity among Indian individuals. J Biosci. 2012;37:647–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Low K, Hwang L, Hua J, Zhu A, Morales W, Pimentel M. A combination of rifaximin and neomycin is most effective in treating irritable bowel syndrome patients with methane on lactulose breath test. J Clin Gastroenterol. 2010;44:547–50.PubMedGoogle Scholar
  67. 67.
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother. 2011;66:2038–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Marvin-Sikkema FD, Rees E, Kraak MN, Gottschal JC, Prins RA. Influence of metronidazole, CO, CO(2), and methanogens on the fermentative metabolism of the Anaerobic Fungus Neocallimastix sp. Strain L2. Appl Environ Microbiol. 1993;59:2678–83.PubMedGoogle Scholar
  69. 69.
    Medani M, Collins D, Docherty NG, Baird AW, O'Connell PR, Winter DC. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis. 2011;17:1620–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Schemann M, Grundy D. Role of hydrogen sulfide in visceral nociception. Gut. 2009;58:744–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.PubMedCrossRefGoogle Scholar
  72. 72.
    Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A. 2013;110:13582–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev. 2007;6:917–35.CrossRefGoogle Scholar
  74. 74.
    Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Schicho R, Krueger D, Zeller F, et al. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology. 2006;131:1542–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Gallego D, Clave P, Donovan J, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil. 2008;20:1306–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Picton R, Eggo MC, Langman MJ, Singh S. Impaired detoxication of hydrogen sulfide in ulcerative colitis? Dig Dis Sci. 2007;52:373–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark Pimentel
    • 1
    • 2
    Email author
  • Ruchi Mathur
    • 1
    • 2
  • Christopher Chang
    • 1
    • 2
  1. 1.GI Motility Program, Division of GastroenterologyCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Diabetes Program, Division of EndocrinologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations