Skip to main content

Advertisement

Log in

Cancer Risk Related to Gastrointestinal Diagnostic Radiation Exposure

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Exposure to ionizing radiation is associated with an increased risk of cancer. With the growing use of diagnostic imaging studies, there is concern for increasing the risk of radiation associated malignancy of the gastrointestinal tract. The purpose of this review is to summarize the existing literature for risk of gastrointestinal malignancy after ionizing radiation exposure from diagnostic imaging studies. Estimates of organ specific effective doses of radiation vary widely based on the method of measurement and patient factors. Most of the current data are based on calculations of organ effective doses from anthropomorphic phantoms and estimated cancer risk based on radiation exposure from environmental sources. Radiation associated cancer risk is dependent on both the cumulative radiation dose and the radiosensitivity of the particular organ. The majority of radiation exposure and risk associated with gastrointestinal malignancy comes from CT scans, especially of the abdomen/pelvis. Of the abdominal organs, the colon carries the highest lifetime attributable risk of radiation associated malignancy. The attributable risk of malignancy for an individual diagnostic imaging study is low, but measurable, and therefore imaging studies without radiation such as MRI and ultrasound should be considered, especially in patients who require repeated imaging studies. There is a shortage of epidemiological data and an absence of prospective data with adequate follow-up to describe accurate risk estimates of gastrointestinal cancers after diagnostic imaging. More studies are needed to better determine the risks of malignancy from diagnostic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res. 2004;162(4):377–89.

    Article  PubMed  CAS  Google Scholar 

  2. Li CI, Nishi N, McDougall JA, Semmens EO, Sugiyama H, Soda M, et al. Relationship between radiation exposure and risk of second primary cancers among atomic bomb survivors. Cancer Res. 2010;70(18):7187–98.

    Article  PubMed  CAS  Google Scholar 

  3. Folley JH, Borges W, Yamawaki T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med. 1952;13(3):311–21.

    Article  PubMed  CAS  Google Scholar 

  4. Little MP. Cancer and non-cancer effects in Japanese atomic bomb survivors. J Radiol Prot. 2009;29(2A):A43–59.

    Article  PubMed  CAS  Google Scholar 

  5. Cardis E, Vrijheid M, Blettner M, et al. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ. 2005;331(7508):77.

    Article  PubMed  CAS  Google Scholar 

  6. Muirhead CR, Goodill AA, Haylock RG, et al. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. J Radiol Prot. 1999;19(1):3–26.

    Article  PubMed  CAS  Google Scholar 

  7. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol. 2006;36 Suppl 2:121–5.

    Article  PubMed  Google Scholar 

  8. Ron E, Modan B, Boice Jr JD, Alfandary E, Stovall M, Chetrit A, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319(16):1033–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res. 2005;163(4):424–32.

    Article  PubMed  CAS  Google Scholar 

  10. Abdel-Wahab M, Reis IM, Wu J, Duncan R. Second primary cancer risk of radiation therapy after radical prostatectomy for prostate cancer: an analysis of SEER data. Urology. 2009;74(4):866–71.

    Article  PubMed  Google Scholar 

  11. Van den Belt-Dusebout AW, Aleman BM, Besseling G, et al. Roles of radiation dose and chemotherapy in the etiology of stomach cancer as a second malignancy. Int J Radiat Oncol Biol Phys. 2009;75(5):1420–9.

    Article  PubMed  Google Scholar 

  12. Ron E, Boice Jr JD, Hamburger S, Stovall M. Mortality following radiation treatment for infertility of hormonal origin or amenorrhoea. Int J Epidemiol. 1994;23(6):1165–73.

    Article  PubMed  CAS  Google Scholar 

  13. Amis Jr ES, Butler PF, Applegate KE, et al. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4(5):272–84.

    Article  PubMed  Google Scholar 

  14. Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, et al. Cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251(1):175–84.

    Article  PubMed  Google Scholar 

  15. Berrington de Gonzales A, Darby A. Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.

    Article  Google Scholar 

  16. Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G, et al. Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology. 2007;245(3):742–50.

    Article  PubMed  Google Scholar 

  17. Miller AB, Howe GR, Sherman GJ, et al. Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Engl J Med. 1989;321(19):1285–9.

    Article  PubMed  CAS  Google Scholar 

  18. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976). 2000;25(16):2052–63.

    Article  CAS  Google Scholar 

  19. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  PubMed  Google Scholar 

  20. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  PubMed  CAS  Google Scholar 

  21. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

    PubMed  CAS  Google Scholar 

  22. • National Research Council BEIR Committee. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press, 2006. The BEIR VII report complied many of the existing epidemiological data on the risk of malignancy from ionizing radiation and developed a model to calculate the risk of cancer based on radiation dosages.

  23. Health Physics Society. Radiation risk in perspective: Position statement of the Health Physics Society. Adopted January 1996, revised August 2004. http://hps.org/documents/radiationrisk.pdf. Accessed June 14, 2007.

  24. Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100(24):13761–6.

    Article  PubMed  CAS  Google Scholar 

  25. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radiation. UNSCEAR Report to the General Assembly, Volume II: Effects. New York: United Nations, 2000b.

  26. Jaffe TA, Gaca AM, Delaney S, Yoshizumi TT, Toncheva G, Nguyen G, et al. Radiation doses from small-bowel follow-through and abdominopelvic MDCT in Crohn’s disease. AJR Am J Roentgenol. 2007;189(5):1015–22.

    Article  PubMed  Google Scholar 

  27. Tarin TV, Sonn G, Shinghal R. Estimating the risk of cancer associated with imaging related radiation during surveillance for stage I testicular cancer using computerized tomography. J Urol. 2009;181(2):627–32. discussion 632–3.

    Article  PubMed  Google Scholar 

  28. Brenner DJ, Elliston CD. Estimated radiation risks potentially associated with full-body CT screening. Radiology. 2004;232(3):735–8.

    Article  PubMed  Google Scholar 

  29. Kim S, Yoshizumi TT, Frush DP, Toncheva G, Yin FF. Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. AJR Am J Roentgenol. 2010;194(1):186–90.

    Article  PubMed  Google Scholar 

  30. Brenner D, Georgsson MA. Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology. 2005;129(1):328–37.

    Article  PubMed  Google Scholar 

  31. Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology. 2003;226:145–52.

    Article  PubMed  Google Scholar 

  32. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298(3):317–23.

    Article  PubMed  CAS  Google Scholar 

  33. Huang B, Li J, Law MW, Zhang J, Shen Y, Khong PL. Radiation dose and cancer risk in retrospectively and prospectively ECG-gated coronary angiography using 64-slice multidetector CT. Br J Radiol. 2010;83(986):152–8.

    Article  PubMed  CAS  Google Scholar 

  34. Huang B, Law MW, Mak HK, Kwok SP, Khong PL. Pediatric 64-MDCT coronary angiography with ECG-modulated tube current: radiation dose and cancer risk. AJR Am J Roentgenol. 2009;193(2):539–44.

    Article  PubMed  Google Scholar 

  35. de González AB, Kim KP, Samet JM. Radiation-induced cancer risk from annual computed tomography for patients with cystic fibrosis. Am J Respir Crit Care Med. 2007;176(10):970–3.

    Article  PubMed  Google Scholar 

  36. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, et al. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res. 1994;137(2 Suppl):S17–67.

    Article  PubMed  CAS  Google Scholar 

  37. Boice Jr JD, Engholm G, Kleinerman RA, et al. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res. 1988;116(1):3–55.

    Article  PubMed  Google Scholar 

  38. Zhuntova GV. Role of occupational radiation in oncologic morbidity among “Mayak” production association workers. Med Tr Prom Ekol. 2009;8:20–5.

    PubMed  Google Scholar 

  39. Darby SC, Reeves G, Key T, Doll R, Stovall M. Mortality in a cohort of women given X-ray therapy for metropathia haemorrhagica. Int J Cancer. 1994;56(6):793–801.

    Article  PubMed  CAS  Google Scholar 

  40. Weiss HA, Darby SC, Doll R. Cancer mortality following X-ray treatment for ankylosing spondylitis. Int J Cancer. 1994;59(3):327–38.

    Article  PubMed  CAS  Google Scholar 

  41. Griem ML, Kleinerman RA, Boice Jr JD, Stovall M, Shefner D, Lubin JH. Cancer following radiotherapy for peptic ulcer. J Natl Cancer Inst. 1994;86(11):842–9.

    Article  PubMed  CAS  Google Scholar 

  42. • Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM. Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010;174(1):83–90. This is one of the few epidemiological studies documenting the mortality risk with serial diagnostic X-ray examinations. Cancer mortality overall was higher than expected, although no increased risk was detected for gastrointestinal cancers.

    Article  PubMed  CAS  Google Scholar 

  43. Boice Jr JD, Day NE, Andersen A, et al. Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst. 1985;74(5):955–75.

    PubMed  Google Scholar 

  44. • Desmond AN, O’Regan K, Curran C, McWilliams S, Fitzgerald T, Maher MM, Shanahan F. Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008;57(11):1524–9. This study identified predictors of high radiation exposure in patients with Crohn’s disease, including: upper GI tract disease, penetrating disease, requirement for intravenous steroid or infliximab, and history of multiple surgeries.

    Article  PubMed  CAS  Google Scholar 

  45. Cardis E, Vrijheid M, Blettner M, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 2007;167:3962416.

    Article  Google Scholar 

  46. Bernstein CN, Blanchard JF, Kliewer E, et al. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91:854–62.

    Article  PubMed  CAS  Google Scholar 

  47. Jess T, Loftus Jr EV, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from Olmsted county, Minnesota. Gastroenterology. 2006;130:1039–46.

    Article  PubMed  Google Scholar 

  48. Inskip PD, Monson RR, Wagoner JK, Stovall M, Davis FG, Kleinerman RA, et al. Cancer mortality following radium treatment for uterine bleeding. Radiat Res. 1990;123(3):331–44.

    Article  PubMed  CAS  Google Scholar 

  49. Lundell M, Holm LE. Risk of solid tumors after irradiation in infancy. Acta Oncol. 1995;34(6):727–34.

    Article  PubMed  CAS  Google Scholar 

  50. Boice Jr JD, Day NE, Andersen A, et al. Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst. 1985;74(5):955–75.

    PubMed  Google Scholar 

  51. Hirofuji Y, Aoyama T, Koyama S, Kawaura C, Fujii K. Evaluation of patient dose for barium enemas and CT colonography in Japan. Br J Radiol. 2009;82(975):219–27.

    Article  PubMed  CAS  Google Scholar 

  52. Geleijns J, Broerse JJ, Chandie Shaw MP, Schultz FW, Teeuwisse W, Van Unnik JG, et al. A comparison of patient dose for examinations of the upper gastrointestinal tract at 11 conventional and digital X-ray units in The Netherlands. Br J Radiol. 1998;71(847):745–53.

    PubMed  CAS  Google Scholar 

  53. Peloquin JM, Pardi DS, Sandborn WJ, Fletcher JG, McCollough CH, Schueler BA, et al. Diagnostic ionizing radiation exposure in a population-based cohort of patients with inflammatory bowel disease. Am J Gastroenterol. 2008;103(8):2015–22.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason K. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M.L., Hou, J.K. Cancer Risk Related to Gastrointestinal Diagnostic Radiation Exposure. Curr Gastroenterol Rep 13, 449–457 (2011). https://doi.org/10.1007/s11894-011-0214-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-011-0214-8

Keywords

Navigation