Skip to main content

Advertisement

Log in

New insights into the pathogenesis of inflammatory bowel disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Several important advances have been made over the past few years that have expanded our knowledge of the immunology of the gut and its complex interactions with commensal organisms. Critical developments in our understanding of the pathogenesis of inflammatory bowel diseases include the discovery of Toll-like receptors and the identification of not one but two susceptibility genes for Crohn’s disease. We have furthered our understanding significantly concerning the role of dendritic cells in the development of gut inflammation. In addition, a novel hypothesis suggesting a protective role for helminthic infections is gaining experimental evidence and direct clinical applicability. In this review we summarize these key developments in the pathophysiology of inflammatory bowel disease and attempt to ascribe clinical relevance where applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandborn WJ, Targan SR: Biologic therapy of inflammatory bowel disease. Gastroenterology 2002, 122:1592–1608.

    Article  PubMed  CAS  Google Scholar 

  2. Sinha A, Nightingale J, West KP, et al.: Epidermal growth factor enemas with oral mesalamine for mild-to-moderate leftsided ulcerative colitis or proctitis. N Engl J Med 2003, 349:350–357.

    Article  PubMed  CAS  Google Scholar 

  3. Monteleone I, Vavassori P, Biancone L, et al.: Immunoregulation in the gut: success and failures in human disease. Gut 2002, 50 Suppl 3:III60-III64.

    Article  PubMed  CAS  Google Scholar 

  4. Bouma G, Strober W: The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003, 3:521–533. A well-written review of the pathogenetic basis of gut inflammation and its relevance to IBD.

    Article  PubMed  CAS  Google Scholar 

  5. Sonnenburg JL, Angenent LT, Gordon JI: Getting a grip on things: How do communities of bacterial symbionts become established in our intestine? Nat Immunol 2004, 5:569–573.

    Article  PubMed  CAS  Google Scholar 

  6. Mannon P, Mayer L, Elson CO, et al., for the IL-12 in Crohn’s Disease Study Group: Anti-interleukin 12 treats active Crohn’s disease [abstract]. Presented at Digestive Disease Week, New Orleans, LA, May 5–10, 2004.

  7. Oppmann B, Lesley R, Blom B, et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000, 13:715–725.

    Article  PubMed  CAS  Google Scholar 

  8. Cua DJ, Sherlock J, Chen Y, et al.: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421:744–748.

    Article  PubMed  CAS  Google Scholar 

  9. Heller F, Fuss IJ, Nieuwenhuis EE, et al.: Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002, 17:629–638.

    Article  PubMed  CAS  Google Scholar 

  10. Fuss IJ, Heller F, Boirivant M, et al.: Nonclassical CD1drestricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 2004, 113:1490–1497.

    Article  PubMed  CAS  Google Scholar 

  11. Saubermann LJ, Beck P, De Jong YP, et al.: Activation of natural killer T cells by alpha-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 2000, 119:119–128.

    Article  PubMed  CAS  Google Scholar 

  12. Schreiber S, Fedorak RN, Nielsen OH, et al.: Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000, 119:1461–1472.

    Article  PubMed  CAS  Google Scholar 

  13. Steidler L, Hans W, Schotte L, et al.: Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000, 289:1352–1355.

    Article  PubMed  CAS  Google Scholar 

  14. Van Montfrans C, Rodriguez Pena MS, Pronk I, et al.: Prevention of colitis by interleukin 10-transduced T lymphocytes in the SCID mice transfer model. Gastroenterology 2002, 123:1865–1876.

    Article  CAS  Google Scholar 

  15. Nakase H, Okazaki K, Tabata Y, et al.: New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 2002, 301:59–65.

    Article  PubMed  CAS  Google Scholar 

  16. Sandborn WJ, Enns R, Feagan B, et al.: A phase III, doubleblind, placebo-controlled study of the efficacy, safety, and tolerability of Antegren (natalizumab) in maintaining clinical response and remission in Crohn’s disease (ENACT-2) [abstract]. Presented at Digestive Disease Week, New Orleans, LA, May 5–10, 2004.

  17. Fedorak RN, Madsen KL: Probiotics and the management of inflammatory bowel disease. Inflamm Bowel Dis 2004, 10:286–299.

    Article  PubMed  Google Scholar 

  18. D’Haens GR, Geboes K, Peeters M, et al.: Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998, 114:262–267.

    Article  PubMed  CAS  Google Scholar 

  19. Madsen K, Cornish A, Soper P, et al.: Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001, 121:580–591.

    Article  PubMed  CAS  Google Scholar 

  20. Pathmakanthan S, Li CK, Cowie J, Hawkey CJ: Lactobacillus plantarum 299: beneficial in vitro immunomodulation in cells extracted from inflamed human colon. J Gastroenterol Hepatol 2004, 19:166–173.

    Article  PubMed  Google Scholar 

  21. Shiba T, Aiba Y, Ishikawa H, et al.: The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol 2003, 47:371–378.

    PubMed  CAS  Google Scholar 

  22. Rachmilewitz D, Katakura K, Karmeli F, et al.: Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004, 126:520–528. The authors link the beneficial effects of probiotics with a specific TLR pathway and suggest a protective role for TLR9 signaling.

    Article  PubMed  CAS  Google Scholar 

  23. Hugot JP, Chamaillard M, Zouali H, et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599–603. This paper, along with that of Ogura et al. [24], describes the associations between NOD2 mutations and Crohn’s disease.

    Article  PubMed  CAS  Google Scholar 

  24. Ogura Y, Bonen DK, Inohara N, et al.: A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:603–606.

    Article  PubMed  CAS  Google Scholar 

  25. Hampe J, Cuthbert A, Croucher PJ, et al.: Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001, 357:1925–1928.

    Article  PubMed  CAS  Google Scholar 

  26. Hisamatsu T, Suzuki M, Reinecker HC, et al.: CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 2003, 124:993–1000.

    Article  PubMed  CAS  Google Scholar 

  27. Lala S, Ogura Y, Osborne C, et al.: Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 2003, 125:47–57.

    Article  PubMed  CAS  Google Scholar 

  28. Berrebi D, Maudinas R, Hugot JP, et al.: Card15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn’s disease colon. Gut 2003, 52:840–846.

    Article  PubMed  CAS  Google Scholar 

  29. Inohara N, Ogura Y, Fontalba A, et al.: Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 2003, 278:5509–5512.

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe T, Kitani A, Murray PJ, Strober W: NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004, 5:800–808. The authors show that NOD2 serves to dampen proinflammatory signaling through the TLR2 pathway. This provides a molecular explanation for how NOD2 mutations might lead to immune dysregulation seen in Crohn’s disease.

    Article  PubMed  CAS  Google Scholar 

  31. Peltekova VD, Wintle RF, Rubin LA, et al.: Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004, 36:471–475. This paper shows the association between Crohn’s disease and a second susceptibility gene, OCTN.

    Article  PubMed  CAS  Google Scholar 

  32. Roediger WE, Nance S: Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br J Exp Pathol 1986, 67:773–782.

    PubMed  CAS  Google Scholar 

  33. Abreu MT, Taylor KD, Lin YC, et al.: Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002, 123:679–688.

    Article  PubMed  CAS  Google Scholar 

  34. Ahmad T, Tamboli CP, Jewell D, Colombel JF: Clinical relevance of advances in genetics and pharmacogenetics of IBD. Gastroenterology 2004, 126:1533–1549.

    Article  PubMed  CAS  Google Scholar 

  35. Abreu MT, Arnold ET, Thomas LS, et al.: TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 2002, 277:20431–20437.

    Article  PubMed  CAS  Google Scholar 

  36. Cario E, Podolsky DK: Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000, 68:7010–7017.

    Article  PubMed  CAS  Google Scholar 

  37. Torok HP, Glas J, Tonenchi L, et al.: Crohn’s disease is associated with a toll-like receptor-9 polymorphism. Gastroenterology 2004, 127:365–366.

    Article  PubMed  Google Scholar 

  38. Torok HP, Glas J, Tonenchi L, et al.: Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004, 112:85–91.

    Article  PubMed  CAS  Google Scholar 

  39. Franchimont D, Vermeire S, El Housni H, et al.: Deficient hostbacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 2004, 53:987–992.

    Article  PubMed  CAS  Google Scholar 

  40. Ortega-Cava CF, Ishihara S, Rumi MA, et al.: Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 2003, 170:3977–3985.

    PubMed  CAS  Google Scholar 

  41. Melmed G, Thomas LS, Lee N, et al.: Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol 2003, 170:1406–1415.

    PubMed  CAS  Google Scholar 

  42. Otte JM, Cario E, Podolsky DK: Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004, 126:1054–1070.

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi F, Smith KD, Ozinsky A, et al.: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  44. Bambou JC, Giraud A, Menard S, et al.: In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem J Biol Chem 2004 Aug 9 [Epub ahead of print].

  45. Rachmilewitz D, Karmeli F, Takabayashi K, et al.: Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 2002, 122:1428–1441.

    Article  PubMed  CAS  Google Scholar 

  46. Gionchetti P, Rizzello F, Helwig U, et al.: Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebocontrolled trial. Gastroenterology 2003, 124:1202–1209.

    Article  PubMed  Google Scholar 

  47. Cohavy O, Bruckner D, Gordon LK, et al.: Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000, 68:1542–1548.

    Article  PubMed  CAS  Google Scholar 

  48. Landers CJ, Cohavy O, Misra R, et al.: Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002, 123:689–699.

    Article  PubMed  CAS  Google Scholar 

  49. Targan SR LC, Lodes M, Cong Y, et al.: Antibodies to a novel flagellin (CBir1) define a unique serologic response in Crohn’s disease [abstract]. Presented at Digestive Disease Week, New Orleans, LA, May 5–10, 2004.

  50. Mow WS, Lo SK, Targan SR, et al.: Initial experience with wireless capsule enteroscopy in the diagnosis and management of inflammatory bowel disease. Clin Gastroenterol Hepatol 2004, 2:31–40.

    Article  PubMed  Google Scholar 

  51. Arnott IDR, Landers CJ, Nimmo EJ, et al.: Stereoactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol 2004, in press.

  52. Stagg AJ, Hart AL, Knight SC, Kamm MA: The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut 2003, 52:1522–1529. Review of the role of dendritic cells in the pathogenesis of IBD.

    Article  PubMed  CAS  Google Scholar 

  53. Whelan M, Harnett MM, Houston KM, et al.: A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J Immunol 2000, 164:6453–6460.

    PubMed  CAS  Google Scholar 

  54. Agrawal S, Agrawal A, Doughty B, et al.: Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 2003, 171:4984–4989.

    PubMed  CAS  Google Scholar 

  55. Butcher EC, Picker LJ: Lymphocyte homing and homeostasis. Science 1996, 272:60–66.

    Article  PubMed  CAS  Google Scholar 

  56. de Baey A, Mende I, Baretton G, et al.: A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol 2003, 170:5089–5094.

    Google Scholar 

  57. Yang SK, Loftus EV, Jr., Sandborn WJ: Epidemiology of inflammatory bowel disease in Asia. Inflamm Bowel Dis 2001, 7:260–270.

    Article  PubMed  CAS  Google Scholar 

  58. Elliott DE, Urban JJ, Argo CK, Weinstock JV: Does the failure to acquire helminthic parasites predispose to Crohn’s disease? Faseb J 2000, 14:1848–1855.

    Article  PubMed  CAS  Google Scholar 

  59. Weinstock JV, Summers R, Elliott DE: Helminths and harmony. Gut 2004, 53:7–9. Review of epidemiologic and immunologic phenomena that point to a protective role of helminthic exposure against gut immune dysregulation.

    Article  PubMed  CAS  Google Scholar 

  60. Gause WC, Grencis RK: Immunity to gut nematodes: induction of the adaptive response and impact on gut physiology. Mucosal Immunol Update 2004, 12:9–12.

    Google Scholar 

  61. Summers RW, Thompshon R, Urban JF Jr, Weinstock JV: Trial of helminth ova in active Crohn’s disease [abstract]. Presented at Digestive Disease Week, New Orleans, LA, May 5–10, 2004.

  62. Elliott DE, Li J, Blum A, et al.: Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003, 284:G385-G391.

    PubMed  CAS  Google Scholar 

  63. Moreels TG, Nieuwendijk RJ, De Man JG, et al.: Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut 2004, 53:99–107.

    Article  PubMed  CAS  Google Scholar 

  64. Summers RW, Thompshon R, Urban JF Jr, Weinstock JV: Double-blind, placebo-controlled trial of helminthic ova therapy in active ulcerative colitis [abstract]. Presented at Digestive Disease Week, New Orleans, LA, May 5–10, 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melmed, G.Y., Abreu, M.T. New insights into the pathogenesis of inflammatory bowel disease. Curr Gastroenterol Rep 6, 474–481 (2004). https://doi.org/10.1007/s11894-004-0069-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-004-0069-3

Keywords

Navigation