Skip to main content
Log in

Drug delivery to the small intestine

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Oral delivery of drugs to the small intestine is an important topic in the research and development of more effective oral dose forms. This review highlights several important developments in this area. An overriding theme in drug delivery to the small intestine is how to increase the efficiency (ie, how to increase bioavailability) of absorption. The role of P-glycoprotein and intestinal transporters is discussed in this regard. These systems are normally studied under defined in vitro conditions; recent data suggest that this approach, though useful, may not fully represent the in vivo situation. Recent advances and issues in the characterization and prediction of drug absorption from the small intestine are reviewed. These efforts, if successful, will shorten development timelines by eliminating compounds with poor absorption characteristics early in the process. Nanoparticulate delivery systems and those prepared by microfabrication technology are being used to improve bioavailability of poorly absorbed drugs. A relatively new technique (electroporation) has been proposed to enhance oral delivery of macromolecules, still an unrealized objective in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan LMS, Lowes S, Hirst BH: The ABCs of drug transport in intestine and liver: efflux proteins limiting absorption and bioavailability. Eur J Pharm Sci 2004, 21:25–51.

    Article  PubMed  CAS  Google Scholar 

  2. Walgren RA, Karnaky KJ, Lindenmayer GE, et al.: Efflux of dietary flavanoid quercetin 4’-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2a. J Pharmacol Exp Ther 2000, 294:830–836.

    PubMed  CAS  Google Scholar 

  3. Watkins PB: Drug metabolism by cytochromes P450 in the liver and small bowel. Gastrointest Pharmacol 1992, 21:511–526.

    CAS  Google Scholar 

  4. Thummel KE, Wilkinson GR: In vitro and in vivo drug interactions involving human CYP34A. Annu Rev Pharmacol Toxicol 1998, 38:389–430.

    Article  PubMed  CAS  Google Scholar 

  5. Keppler D, Cui Y, König J, et al.: Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul 1999, 39:787–791.

    Google Scholar 

  6. Mouly S, Paine MR: P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res 2003, 20:1595–1599.

    Article  PubMed  CAS  Google Scholar 

  7. Adachi Y, Suzuki H, Sugiyama Y: Quantitative evaluation of the function of small intestinal P-glycoprotein: comparative studies between in situ and in vitro. Pharm Res 2003, 20:1163–1169.

    Article  PubMed  CAS  Google Scholar 

  8. Li Q, Sai Y, Kato Y, et al.: Influence of drugs and nutrients on transporter gene expression levels in Caco-2 and LS180 intestinal epithelial cell lines. Pharm Res 2003, 20:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  9. Kim RB, Wandel C, Leake B, et al.: Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999, 16:408–414.

    Article  PubMed  CAS  Google Scholar 

  10. Troutman MD, Thakker DR: Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers. Pharm Res 2003, 20:1200–1209. This paper presents data showing that Pgp-mediated efflux during absorptive and secretory transport was asymmetric for all compounds tested. The authors conclude that the use of efflux ratios can be misleading in predicting the extent to which Pgp attenuates the absorption of substrates from the intestinal lumen.

    Article  PubMed  CAS  Google Scholar 

  11. Chiu Y-Y, Hagahi K, Neudeck BL, et al.: Human jejunal permeability of cyclosporin A: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. Pharm Res 2003, 20:749–756.

    Article  PubMed  CAS  Google Scholar 

  12. Esfand R, Tomalia DA: Poly(amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001, 6:427–436.

    Article  PubMed  CAS  Google Scholar 

  13. El-Sayed M, Rhodes CA, Ginski M, et al.: Transport mechanism(s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm 2003, 265:151–157.

    Article  PubMed  CAS  Google Scholar 

  14. D’Emanuele A, Jevprasesphant R, Penny J, et al.: The use of dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release 2004, 95:447–453.

    Article  PubMed  CAS  Google Scholar 

  15. Deferme S, Tack J, Lammert F, et al.: P-glycoprotein attenuating effect of human intestinal fluid. Pharm Res 2003, 20:900–903. This paper is important because it presents data on the impact of human intestinal fluid on Pgp-mediated efflux under in vitro conditions using the Caco-2 monolayer test system. Results from this commonly used cell line suggest that use of traditional buffer salts only may overestimate the transporting effects of Pgp compared with effects in vivo.

    Article  PubMed  CAS  Google Scholar 

  16. Steffansen B, Nielsen CU, Brodin B, et al.: Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur J Pharmaceut Sci 2004, 21:3–16.

    Article  CAS  Google Scholar 

  17. Herrera-Ruiz D, Wang Q, Cook TS, et al.: Spatial expression patterns of peptide transporters in human and rat gastro intestinal tract, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS Pharm Sci 2001, 3:(article 9), http://www.aapspharmsci.org.

  18. Okamura M, Terada T, Katsura T, et al.: Inhibitory effect of zinc on PEPT1-mediated transport of glycylsarcosine and b-lactam antibiotics in human intestinal cell line Caco-2. Pharm Res 2003, 20:1389–1393.

    Article  PubMed  CAS  Google Scholar 

  19. Thomsen AE, Friedrichsen GM, Sørensen AH, et al.: Prodrugs of purine and pyrimidine analogues for the intestinal di/tripeptide transporter PepT1: affinity for hPepT1 in Caco-2 cells, drug release in aqueous media and in vitro metabolism. J Control Release 2003, 86:279–292. This paper presents data on several key measurements of a prodrugbased delivery system designed to enhance the oral bioavailability of the drugs such as acyclovir. One of the prodrugs tested showed high affinity for the intestinal transporter PEPT1 and characteristics desired (stability in the upper intestine and as the prodrug is transported through the epithelium and the ability to regenerate the parent drug in blood).

    Article  PubMed  CAS  Google Scholar 

  20. Amidon GL, Lennernäs H, Shah VP, et al.: A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995, 12:413–420.

    Article  PubMed  CAS  Google Scholar 

  21. Rinaki E, Valsami G, Macheras P: Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm Res 2003, 20:1917–1925.

    Article  PubMed  CAS  Google Scholar 

  22. Yazdanian M, Briggs K, Jankovsky C, et al.: The ‘high solubility’ definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm Res 2004, 21:293–299.

    Article  PubMed  CAS  Google Scholar 

  23. Hilgers AR, Smith DP, Biermacher JJ, et al.: Predicting oral absorption of drugs: a case study with a novel class of antimicrobial agents. Pharm Res 2003, 20:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  24. Turner JV, Maddalena DJ, Agotonovic-Kustrin S: Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm Res 2004, 21:68–82. This report presents a predictive model using neural networks and theoretical descriptors. The model worked well when compared with data from the literature representing 137 compounds.

    Article  PubMed  CAS  Google Scholar 

  25. Willmann S, Schmitt Q, Keldenich J, et al.: A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm Res 2003, 20:1766–1771.

    Article  PubMed  CAS  Google Scholar 

  26. Sahoo SK, Labhasetwar V: Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003, 8:1112–1120.

    Article  PubMed  CAS  Google Scholar 

  27. Tao SL, Desai TA: Microfabricated drug delivery systems: from particles to pores. Adv Drug Del Rev 2003, 55:315–328.

    Article  CAS  Google Scholar 

  28. Wilding IR, Prior DV: Remote controlled capsules in human drug absorption (HAD) studies. Crit Rev Ther Drug Carrier Syst 2003, 20:405–431.

    Article  CAS  Google Scholar 

  29. Orive G, Hern’andez RM, Gasc’on AR, et al.: Drug delivery in biotechnology: present and future. Curr Opin Biotech 2003, 14:659–664.

    Article  PubMed  CAS  Google Scholar 

  30. Arb’os P, Campanero MA, Arangoa MA, et al.: Nanoparticles with specific bioadhesive properties to circumvent the presystemic degradation of fluorinated pyrimidines. J Control Release 2004, 96:55–65.

    Article  CAS  Google Scholar 

  31. Pandey R, Zahoor A, Sharma S, et al.: Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis 2003, 83:373–378.

    Article  PubMed  Google Scholar 

  32. García-Fuentes M, Torres D, Alonso MJ: Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B Biointerfaces 2002, 27:159–168.

    Article  Google Scholar 

  33. Gabor F, Stangel M, Wirth M: Lectin-mediated bioadhesion: binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29, and HCT-8. J Control Release 1998, 55:131–142.

    Article  PubMed  CAS  Google Scholar 

  34. Lambkin I, Pinilla C, Hamashin C, et al.: Toward targeted oral vaccine delivery systems: Selection of lectin mimetics from combinatorial libraries. Pharm Res 2003, 20:1258–1266.

    Article  PubMed  CAS  Google Scholar 

  35. Irrache JM, Durrer D, Duchene D, et al.: Bioadhesion of lectinlatex conjugates to rat intestinal mucosa. Pharm Res 1996, 13:1716–1719.

    Article  Google Scholar 

  36. Tao SL, Lubeley MW, Desai TA: Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. J Control Release 2003, 88:215–228. This paper describes the process by which MF particles are prepared using traditional micromachining processes, the chemistry of binding lectins to one side of the particles, and their binding characteristics to Caco-2 monolayers.

    Article  PubMed  CAS  Google Scholar 

  37. Ahmed A, Bonner C, Desai TA: Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J Control Release 2002, 81:291–306.

    Article  PubMed  CAS  Google Scholar 

  38. Heller R, Gilbert R, Jaroszeski MJ: Clinical applications of electrochemotherapy. Adv Drug Deliv Rev 1999, 35:119–129.

    Article  PubMed  CAS  Google Scholar 

  39. Gharty-Tagoi EB, Morgan JS, Ahmed K, et al.: Electroporationmediated delivery of molecules to model intestinal epithelia. Int J Pharm 2004, 270:127–138.

    Article  Google Scholar 

  40. Cor’a LA, Am’erico MF, Oliveira B, et al.: Disintegration of magnetic tablets in human stomach evaluated by alternate current biosusceptometry. Eur J Pharm Biopharm 2003, 56:413–420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, D.R. Drug delivery to the small intestine. Curr Gastroenterol Rep 6, 371–376 (2004). https://doi.org/10.1007/s11894-004-0052-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-004-0052-z

Keywords

Navigation