Skip to main content
Log in

Risk of Type 2 Diabetes Among Individuals with Excess Weight: Weight Trajectory Effects

Current Diabetes Reports Aims and scope Submit manuscript

Cite this article

Abstract 

Purpose of Review

Increased risk of type 2 diabetes mellitus (T2D) among individuals with overweight or obesity is well-established; however, questions remain about the temporal dynamics of weight change (gain or loss) on the natural course of T2D in this at-risk population. Existing epidemiologic evidence is limited to studies that discretely sample and assess excess weight and T2D risk at different ages with limited follow-up, yet changes in weight may have time-varying and possibly non-linear effects on T2D risk. Predicting the impact of weight change on the risk of T2D is key to informing primary prevention. We critically review the relationship between weight change, trajectory groups (i.e., distinct weight change patterns), and T2D risk among individuals with excess weight in recently published T2D prevention randomized controlled trials (RCTs) and longitudinal cohort studies.

Recent Findings

Overall, weight trajectory groups have been shown to differ by age of onset, sex, and patterns of insulin resistance or beta-cell function biomarkers. Lifestyle (diet and physical activity), pharmacological, and surgical interventions can modify an individual’s weight trajectory. Adolescence is a critical etiologically relevant window during which onset of excess weight may be associated with higher risk of T2D. Changes in insulin resistance and beta-cell function biomarkers are distinct but related correlates of weight trajectory groups that evolve contemporaneously over time. These multi-trajectory markers are differentially associated with T2D risk.

Summary

T2D risk may differ by the age of onset and duration of excess body weight, and the type of weight loss intervention. A better understanding of the changes in weight, insulin sensitivity, and beta-cell function as distinct but related correlates of T2D risk that evolve contemporaneously over time has important implications for designing and targeting primary prevention efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89(3):309–19.

    Article  PubMed  Google Scholar 

  2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    Article  CAS  PubMed  Google Scholar 

  3. Bragg F, Tang K, Guo Y, et al. Associations of general and central adiposity with incident diabetes in Chinese men and women. Diabetes Care. 2018;41(3):494.

    Article  PubMed  Google Scholar 

  4. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116(1):39–48.

    Article  PubMed  Google Scholar 

  5. Snijder MB, Dekker JM, Visser M, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels. Diabetes Care. 2004;27(2):372.

    Article  PubMed  Google Scholar 

  6. Hoyer D, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. Subcutaneous thigh fat area is unrelated to risk of type 2 diabetes in a prospective study of Japanese Americans. Diabetologia. 2011;54(11):2795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Livingston EH. Lower body subcutaneous fat accumulation and diabetes mellitus risk. Surg Obes Relat Dis. 2006;2(3):362–8.

    Article  PubMed  Google Scholar 

  8. Owora AH. Commentary: diagnostic validity and clinical utility of HbA1c tests for type 2 diabetes mellitus. Curr Diabetes Rev. 2018;14(2):196–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32(Suppl 3):S56-59.

    Article  Google Scholar 

  10. Moran A, Jacobs DR, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48(10):2039.

    Article  CAS  PubMed  Google Scholar 

  11. Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol. 1990;162(4):1008–14.

    Article  CAS  PubMed  Google Scholar 

  12. Lindheim SR, Buchanan TA, Duffy DM, et al. Original articlescomparison of estimates of insulin sensitivity in pre- and postmenopausal women using the insulin tolerance test and the frequently sampled intravenous glucose tolerance test. J Soc Gynecol Investig. 1994;1(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  13. Shimokata H, Muller DC, Fleg JL, Sorkin J, Ziemba AW, Andres R. Age as independent determinant of glucose tolerance. Diabetes. 1991;40(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  14. Uusitupa M, Khan TA, Viguiliouk E, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):2611.

    Article  CAS  PubMed Central  Google Scholar 

  15. Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30(7):529–42.

    Article  PubMed  Google Scholar 

  16. Merlotti C, Morabito A, Ceriani V, Pontiroli AE. Prevention of type 2 diabetes in obese at-risk subjects: a systematic review and meta-analysis. Acta Diabetol. 2014;51(5):853–63.

    Article  CAS  PubMed  Google Scholar 

  17. Raben A, Vestentoft PS, Brand-Miller J, et al. The PREVIEW intervention study: results from a 3-year randomized 2 x 2 factorial multinational trial investigating the role of protein, glycaemic index and physical activity for prevention of type 2 diabetes. Diabetes Obes Metab. 2021;23(2):324–37.

    Article  CAS  PubMed  Google Scholar 

  18. Mayer VL, Vangeepuram N, Fei K, et al. Outcomes of a weight loss intervention to prevent diabetes among low-income residents of East Harlem. New York Health Educ Behav. 2019;46(6):1073–82.

    Article  PubMed  Google Scholar 

  19. Lindström J, Peltonen M, Eriksson JG, et al. Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56(2):284–93.

    Article  PubMed  Google Scholar 

  20. Richelsen B, Tonstad S, Rössner S, et al. Effect of orlistat on weight regain and cardiovascular risk factors following a very-low-energy diet in abdominally obese patients: a 3-year randomized, placebo-controlled study. Diabetes Care. 2007;30(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  21. Carlsson LM, Peltonen M, Ahlin S, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367(8):695–704.

    Article  CAS  PubMed  Google Scholar 

  22. le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409.

    Article  PubMed  CAS  Google Scholar 

  23. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  24. Clamp LD, Hume DJ, Lambert EV, Kroff J. Enhanced insulin sensitivity in successful, long-term weight loss maintainers compared with matched controls with no weight loss history. Nutr Diabetes. 2017;7(6):e282–e282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haw JS, Galaviz KI, Straus AN, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177(12):1808–17.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115(3):466–79.

    Article  CAS  PubMed  Google Scholar 

  27. Parretti HM, Jebb SA, Johns DJ, Lewis AL, Christian-Brown AM, Aveyard P. Clinical effectiveness of very-low-energy diets in the management of weight loss: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2016;17(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  28. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9(1):1–12.

    Article  PubMed  Google Scholar 

  29. Cui Y, Cai T, Zhou Z, et al. Health effects of alternate-day fasting in adults: a systematic review and meta-analysis. Frontiers in Nutrition. 2020;7.

  30. Patikorn C, Roubal K, Veettil SK, et al. Intermittent fasting and obesity-related health outcomes: an umbrella review of meta-analyses of randomized clinical trials. JAMA Netw Open. 2021;4(12):e2139558–e2139558.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. journal of the american college of cardiology. 2018;71(1):69–84.

  32. Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014;164(4):302–11.

    Article  PubMed  Google Scholar 

  33. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christensen P, Meinert Larsen T, Westerterp-Plantenga M, et al. Men and women respond differently to rapid weight loss: metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes Metab. 2018;20(12):2840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  36. Diabetes Prevention Program Research G, Knowler WC, Fowler SE, et al 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet (London, England). 2009;374(9702):1677–1686.

  37. Gadde KM, Atkins KD. The limits and challenges of antiobesity pharmacotherapy. Expert Opin Pharmacother. 2020;21(11):1319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  39. Lachin JM, Christophi CA, Edelstein SL, et al. Factors associated with diabetes onset during metformin versus placebo therapy in the diabetes prevention program. Diabetes. 2007;56(4):1153–9.

    Article  CAS  PubMed  Google Scholar 

  40. Allison DB, Heshka S. Toward an empirically derived typology of obese persons: derivation in a nonclinical sample. Int J Eat Disord. 1993;13(1):93–108.

    Article  CAS  PubMed  Google Scholar 

  41. Heo M, Faith MS, Mott JW, Gorman BS, Redden DT, Allison DB. Hierarchical linear models for the development of growth curves: an example with body mass index in overweight/obese adults. Stat Med. 2003;22(11):1911–42.

    Article  PubMed  Google Scholar 

  42. Luo J, Hodge A, Hendryx M, Byles JE. BMI trajectory and subsequent risk of type 2 diabetes among middle-aged women. Nutr Metab Cardiovasc Dis. 2021;31(4):1063–70.

    Article  PubMed  Google Scholar 

  43. Luo J, Hodge A, Hendryx M, Byles JE. Age of obesity onset, cumulative obesity exposure over early adulthood and risk of type 2 diabetes. Diabetologia. 2020;63(3):519–27.

    Article  CAS  PubMed  Google Scholar 

  44. Wu YF, Fan HY, Chen YC, Kuo KL, Chien KL. Adolescent tri-ponderal mass index growth trajectories and incident diabetes mellitus in early adulthood. J Clin Endocrinol Metab. 2021;106(8):e2919–27.

    Article  PubMed  Google Scholar 

  45. Tirosh A, Shai I, Afek A, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011;364(14):1315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lv J, Fan B, Wei M, et al. Trajectories of early to mid-life adulthood BMI and incident diabetes: the China Health and Nutrition Survey. BMJ Open Diabetes Res Care. 2020;8(1): e000972.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vistisen D, Witte DR, Tabák AG, et al. Patterns of obesity development before the diagnosis of type 2 diabetes: the Whitehall II cohort study. PLoS Med. 2014;11(2):e1001602.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nano J, Dhana K, Asllanaj E, et al. Trajectories of BMI before diagnosis of type 2 diabetes: the Rotterdam Study. Obesity (Silver Spring). 2020;28(6):1149–56.

    Article  CAS  Google Scholar 

  49. Yacamán-Méndez D, Trolle-Lagerros Y, Zhou M, et al. Life-course trajectories of weight and their impact on the incidence of type 2 diabetes. Sci Rep. 2021;11(1):12494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nagin DS. Analyzing developmental trajectories: a semiparametric, group-based approach. Psychol Methods. 1999;4(2):139–57.

    Article  Google Scholar 

  51. Nagin D, Nagin D. Group-based modeling of development. Cambridge, UNITED STATES: Harvard University Press; 2005.

    Book  Google Scholar 

  52. Muthén BO. Beyond SEM: General latent variable modeling. Behaviormetrika. 2002;29(1):81–117.

    Article  Google Scholar 

  53. Muth´en B. Chapter 19 Latent variable analysis. Growth mixture modeling and related techniques for longitudinal data. In Kaplan D ed The Sage handbook of quantitative methodology for the social sciences Thousand Oakes Sage Publications., Inc.; 2004:345–368.

  54. Hannon TS, Arslanian SA. The changing face of diabetes in youth: lessons learned from studies of type 2 diabetes. Ann N Y Acad Sci. 2015;1353:113–37.

    Article  CAS  PubMed  Google Scholar 

  55. Chen ME, Chandramouli AG, Considine RV, Hannon TS, Mather KJ. Comparison of β-cell function between overweight/obese adults and adolescents across the spectrum of glycemia. Diabetes Care. 2018;41(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  56. Klitgaard HB, Kilbak JH, Nozawa EA, Seidel AV, Magkos F. Physiological and lifestyle traits of metabolic dysfunction in the absence of obesity. Curr Diab Rep. 2020;20(6):17.

    Article  CAS  PubMed  Google Scholar 

  57. Owora AH, Dawson J, Gadbury G, et al. Randomisation can do many things – but it cannot “fail.” Significance. 2022;19(1):20–3.

    Article  Google Scholar 

  58. Rubin DB. Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics. 1991;47(4):1213–34.

    Article  CAS  PubMed  Google Scholar 

  59. Yanovski SZ, Bain RP, Williamson DF. Report of a National Institutes of Health-Centers for Disease Control and Prevention workshop on the feasibility of conducting a randomized clinical trial to estimate the long-term health effects of intentional weight loss in obese persons. Am J Clin Nutr. 1999;69(3):366–72.

    Article  CAS  PubMed  Google Scholar 

  60. VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37:17–32.

    Article  PubMed  Google Scholar 

  61. Müller MJ, Enderle J, Bosy-Westphal A. Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep. 2016;5(4):413–23.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fritz MS, Kenny DA, MacKinnon DP. The combined effects of measurement error and omitting confounders in the single-mediator model. Multivariate Behav Res. 2016;51(5):681–97.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aaby D, Siddique J. Effects of differential measurement error in self-reported diet in longitudinal lifestyle intervention studies. Int J Behav Nutr Phys Act. 2021;18(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Murrah WM. Compound bias due to measurement error when comparing regression coefficients. Educ Psychol Meas. 2020;80(3):548–77.

    Article  PubMed  Google Scholar 

  65. McCracken MW. Parameter estimation and tests of equal forecast accuracy between non-nested models. Int J Forecast. 2004;20(3):503–14.

    Article  Google Scholar 

  66. Valeri L, Lin X, VanderWeele TJ. Mediation analysis when a continuous mediator is measured with error and the outcome follows a generalized linear model. Stat Med. 2014;33(28):4875–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Muzumdar R, Allison DB, Huffman DM, et al. Visceral adipose tissue modulates mammalian longevity. Aging Cell. 2008;7(3):438–40.

    Article  CAS  PubMed  Google Scholar 

  68. Klein S. Is visceral fat responsible for the metabolic abnormalities associated with obesity?: implications of omentectomy. Diabetes Care. 2010;33(7):1693–4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kelly T, Unwin D, Finucane F. Low-carbohydrate diets in the management of obesity and type 2 diabetes: a review from clinicians using the approach in practice. Int j environ res public health. 2020;17:7.

    Google Scholar 

  70. Mitchell SJ, Bernier M, Mattison JA, et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 2019;29(1):221-228.e223.

    Article  CAS  PubMed  Google Scholar 

  71. Vasselli JR, Weindruch R, Heymsfield SB, et al. Intentional weight loss reduces mortality rate in a rodent model of dietary obesity. Obes Res. 2005;13(4):693–702.

    Article  PubMed  Google Scholar 

  72. Le Couteur DG, Solon-Biet S, Cogger VC, et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci. 2016;73(6):1237–52.

    Article  PubMed  CAS  Google Scholar 

  73. Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.

    Article  CAS  PubMed  Google Scholar 

  74. Mattison JA, Colman RJ, Beasley TM, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith DL Jr, Yang Y, Nagy TR, et al. Weight cycling increases longevity compared with sustained obesity in mice. Obesity (Silver Spring). 2018;26(11):1733–9.

    Article  Google Scholar 

  77. Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci USA. 2014;111(47):16647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zou H, Yin P, Liu L, et al. Body-weight fluctuation was associated with increased risk for cardiovascular disease, all-cause and cardiovascular mortality: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2019;10:728.

    Article  Google Scholar 

  79. Ejima K, Li P, Smith DL Jr, et al. Observational research rigour alone does not justify causal inference. Eur J Clin Invest. 2016;46(12):985–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur H. Owora.

Ethics declarations

Conflict of Interest

Arthur H. Owora reports grants to his institution from Eli Lilly & Co., Inc, Merck & Co., Inc, Soleno Therapeutics, Inc., and the National Institutes of Health, outside the submitted work.

Dr. Allison reports personal fees from Alkermes, Inc.; personal fees from Amin, Talati, Wasserman (Glanbia); other from Big Sky Health, Inc.; personal fees from Biofortis Innovation Services/Merieux NutriSciences; grants and personal fees from California Walnut Commission; personal fees from Clark Hill PLC; other from International Life Sciences Institute of North America (ILSI); personal fees from Kaleido Biosciences and from Law Offices of Ronald Marron; personal fees from Medpace/Gelesis; personal fees from Nestec/Nestle; personal fees from Novo Nordisk Fonden; personal fees from Sports Research Corporation; personal fees from Tomasik, Kostin, & Kasserman; other from Northarvest Bean Grower’s Association; grants from Alliance for Potato Research and Education; other from Almond Board; grants from American Egg Board; grants and personal fees from Arnold Ventures; grants from Dairy Management, Inc.; grants from Eli Lilly and Co.; grants from Herbalife International; grants from Mars, Incorporated; grants and other from Mondelez; grants from National Cattlemen’s Beef Association; grants and other from Peanut Institute; grants from Reckitt Bencksier Group PLC; grants from Soleno Therapeutics; grants from USDA; and grants from National Institutes of Health, outside the submitted work.

Xuan Zhang reports grants to his institution from Eli Lilly & Co., Inc, and National Institutes of Health, outside the submitted work.

Nana A. Gletsu-Miller reports grants to her institution from Eli Lilly & Co., Inc, and National Institutes of Health, outside the submitted work.

Kishore M. Gadde reports grants to his institution from AstraZeneca, BioKier, Indiana University Foundation, and National Institutes of Health, outside the submitted work.

Human and Animal Rights

This article is a review of recent published work on the topic of weight trajectories and the risk of type 2 diabetes. It reports previous publications based on human and animal trials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owora, A.H., Allison, D.B., Zhang, X. et al. Risk of Type 2 Diabetes Among Individuals with Excess Weight: Weight Trajectory Effects. Curr Diab Rep 22, 471–479 (2022). https://doi.org/10.1007/s11892-022-01486-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-022-01486-9

Keywords

Navigation