Skip to main content

Advertisement

Log in

Association Between Diabetes, Diabetic Retinopathy, and Glaucoma

  • Microvascular Complications—Retinopathy (R Channa, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The strength of the relationship between diabetes, diabetic retinopathy (DR), and glaucoma remains controversial. We review evidence supporting and refuting this association and explore mechanistic pathological and treatment relationships linking these diseases.

Recent Findings

While studies have shown diabetes/DR may increase the risk for glaucoma, this remains inconsistently demonstrated. Diabetes/DR may contribute toward glaucomatous optic neuropathy indirectly (either by increasing intraocular pressure or vasculopathy) or through direct damage to the optic nerve. However, certain elements of diabetes may slow glaucoma progression, and diabetic treatment may concurrently be beneficial in glaucoma management. Diabetes plays a significant role in poor outcomes after glaucoma surgery.

Summary

While the relationship between diabetes/DR and glaucoma remains controversial, multiple mechanistic links connecting pathophysiology and management of diabetes, DR, and glaucoma have been made. However, a deeper understanding of the causes of disease association is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tham Y, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article  PubMed  Google Scholar 

  2. Wang HW, et al. Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep. 2018;18(1):656–74. https://doi.org/10.3892/mmr.2018.9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K, B. Who is at risk for glaucoma? American Academy of Ophthalmology. 2020. https://www.aao.org/eye-health/diseases/glaucoma-risk. Accessed Jan 2021.

  4. Glaucoma tables. National Eye Institute. 2020. https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/glaucoma-data-and-statistics/glaucoma-tables. Accessed Jan 2021.

  5. Actis AG, et al. An internal medicine perspective review of risk factors for assessing and progression of primary open angle glaucoma. Minerva Med. 2013;104(4):471–85.

    CAS  PubMed  Google Scholar 

  6. Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79. https://doi.org/10.1001/archopht.120.10.1268.

    Article  PubMed  Google Scholar 

  7. Kass MA, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. https://doi.org/10.1001/archopht.120.6.701. Discussion 829-30.

    Article  PubMed  Google Scholar 

  8. Terauchi R, et al. Seasonal fluctuation in intraocular pressure and its associated factors in primary open-angle glaucoma. Eye. 2021. https://doi.org/10.1038/s41433-021-01403-6.

    Article  PubMed  Google Scholar 

  9. Zhao D, et al. Diabetes, fasting glucose, and the risk of glaucoma. Ophthalmology. 2015;122(1):72–8. https://doi.org/10.1016/j.ophtha.2014.07.051.

    Article  PubMed  Google Scholar 

  10. Jonas JB, et al. Glaucoma. Lancet. 2017;390(10108):2183–93. https://doi.org/10.1016/S0140-6736(17)31469-1.

    Article  PubMed  Google Scholar 

  11. Topouzis F, et al. Risk factors for primary open-angle glaucoma and pseudoexfoliative glaucoma in the Thessaloniki Eye Study. Am J Ophthalmol. 2011;152(2):219-228.e1. https://doi.org/10.1016/j.ajo.2011.01.032.

    Article  PubMed  Google Scholar 

  12. Yanagi M, et al. Vascular risk factors in glaucoma: a review. Clin Experiment Ophthalmol. 2011;39(3):252–8. https://doi.org/10.1111/j.1442-9071.2010.02455.x.

    Article  PubMed  Google Scholar 

  13. Xu L, et al. High myopia and glaucoma susceptibility. Ophthalmology. 2007;114(2):216–20. https://doi.org/10.1016/j.ophtha.2006.06.050.

    Article  PubMed  Google Scholar 

  14. Francis BA, et al. Intraocular pressure, central corneal thickness, and prevalence of open-angle glaucoma: the Los Angeles Latino Eye Study. Am J Ophthalmol. 2008;146(5):741–6. https://doi.org/10.1016/j.ajo.2008.05.048.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rudnicka AR, et al. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci. 2006;47(10):4254–61. https://doi.org/10.1167/iovs.06-0299.

    Article  PubMed  Google Scholar 

  16. Heijl A, et al. Natural History of Open-Angle Glaucoma. Ophthalmology. 2009;116(12):2271–6. https://doi.org/10.1016/j.ophtha.2009.06.042.

    Article  PubMed  Google Scholar 

  17. Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults—screening, diagnosis, and management. JAMA. 2021;325(2):164. https://doi.org/10.1001/jama.2020.21899.

    Article  PubMed  Google Scholar 

  18. Weiner G. Meta-analysis confirms diabetes-glaucoma link. American Academy of Ophthalmology. 2015. https://www.aao.org/eyenet/article/meta-analysis-confirms-diabetes-glaucoma-link. Accessed Jan 2021.

  19. Diabetes facts and statistics. National Institute of Diabetes and Digestive and Kidney Diseases. 2020. https://www.niddk.nih.gov/health-information/health-statistics/diabetes-statistics. Accessed Jan 2021.

  20. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–28. https://doi.org/10.2337/dci18-0007.

    Article  PubMed Central  Google Scholar 

  21. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2014;42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007.

    Article  PubMed  Google Scholar 

  22. Diabetic retinopathy tables. National Eye Institute. 2020. https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/diabetic-retinopathy-data-and-statistics/diabetic-retinopathy-tables. Accessed Jan 2021.

  23. Prevention, C.F.D.C. Centers for disease control and prevention vision health initiative fact sheet: Diabetic retinopathy. Centers for Disease Control and Prevention. 2020. https://www.cdc.gov/visionhealth/pdf/factsheet.pdf. Accessed Jan 2021.

  24. Ellis JD, et al. Glaucoma incidence in an unselected cohort of diabetic patients: is diabetes mellitus a risk factor for glaucoma? Am J Ophthalmol. 2000;131(2):286. https://doi.org/10.1016/S0002-9394(01)00844-3.

    Article  Google Scholar 

  25. Tielsch JM, et al. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology. 1995;102(1):48–53. https://doi.org/10.1016/S0161-6420(95)31055-X.

    Article  CAS  PubMed  Google Scholar 

  26. Kanamori A, et al. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004;28(1):47–54. https://doi.org/10.1076/ceyr.28.1.47.23487.

    Article  PubMed  Google Scholar 

  27. Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica. 2005;219(1):1–10. https://doi.org/10.1159/000081775.

    Article  PubMed  Google Scholar 

  28. SS, H., Pathogenesis of optic nerve damage and visual field defects in glaucoma, in Docum Ophthal Proc Ser. 1980. p. 89–110.

  29. Sato T, Roy S. Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2002;43(1):170–5.

    PubMed  Google Scholar 

  30. Chakravarthy H, Devanathan V. Molecular mechanisms mediating diabetic retinal neurodegeneration: potential research avenues and therapeutic targets. J Mol Neurosci. 2018;66(3):445–61. https://doi.org/10.1007/s12031-018-1188-x.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad SS. Controversies in the vascular theory of glaucomatous optic nerve degeneration. Taiwan J Ophthalmol. 2016;6(4):182–6. https://doi.org/10.1016/j.tjo.2016.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hayreh SS. Neovascular glaucoma. Prog Retin Eye Res. 2007;26(5):470–85. https://doi.org/10.1016/j.preteyeres.2007.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Senthil S, et al. Neovascular glaucoma - a review. Indian J Ophthalmol. 2021;69(3):525–34. https://doi.org/10.4103/ijo.IJO_1591_20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kahn HA. Alternative definitions of open-angle glaucoma: effect on prevalence and associations in the framingham eye study. Arch Ophthalmol. 1980;98(12):2172. https://doi.org/10.1001/archopht.1980.01020041024003.

    Article  CAS  PubMed  Google Scholar 

  35. Klein BEK, Klein R, Jensen SC. Open-angle glaucoma and older-onset diabetes: the Beaver Dam Eye Study. Ophthalmology. 1994;101(7):1173–7. https://doi.org/10.1016/S0161-6420(94)31191-2.

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell P, et al. Open-angle glaucoma and diabetes: the Blue Mountains Eye Study. Ophthalmology. 1997;104:712–8. https://doi.org/10.1016/s0161-6420(97)30247-4.

    Article  CAS  PubMed  Google Scholar 

  37. Quigley H, et al. The prevalence of glaucoma in a population-based study of hispanic subjects. Arch Ophthalmol. 2001;119(12):1819. https://doi.org/10.1001/archopht.119.12.1819.

    Article  CAS  PubMed  Google Scholar 

  38. Le A, et al. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci. 2003;44(9):3783. https://doi.org/10.1167/iovs.03-0077.

    Article  PubMed  Google Scholar 

  39. de Voogd S, et al. Is diabetes mellitus a risk factor for open-angle glaucoma? The Rotterdam study. Ophthalmology. 2006;113(10):1827–31. https://doi.org/10.1016/j.ophtha.2006.03.063.

    Article  PubMed  Google Scholar 

  40. Suzuki Y, et al. Risk factors for open-angle glaucoma in a japanese population: the tajimi study. Ophthalmology. 2006;113(9):1613–7. https://doi.org/10.1016/j.ophtha.2006.03.059.

    Article  PubMed  Google Scholar 

  41. Pasquale LR, et al. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006;113(7):1081–6. https://doi.org/10.1016/j.ophtha.2006.01.066.

    Article  PubMed  Google Scholar 

  42. Perruccio AV, Badley EM, Trope GE. Self-reported glaucoma in Canada: findings from population-based surveys, 1994–2003. Can J Ophthalmol. 2007;42(2):219–26. https://doi.org/10.3129/canjophthalmol.i07-001.

    Article  PubMed  Google Scholar 

  43. Chopra V, et al. Type 2 diabetes mellitus and the risk of open-angle glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008;115(2):227-232.e1. https://doi.org/10.1016/j.ophtha.2007.04.049.

    Article  PubMed  Google Scholar 

  44. Leske MC, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93. https://doi.org/10.1016/j.ophtha.2007.03.017.

    Article  PubMed  Google Scholar 

  45. Tan GS, et al. Diabetes, metabolic abnormalities, and glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol. 2009;127(10):1354–61. https://doi.org/10.1001/archophthalmol.2009.268.

    Article  CAS  PubMed  Google Scholar 

  46. Wang YX, et al. Prevalence of glaucoma in North China: the Beijing Eye Study. Am J Ophthalmol. 2010;150(6):917–24. https://doi.org/10.1016/j.ajo.2010.06.037.

    Article  PubMed  Google Scholar 

  47. Wise LA, et al. A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann Epidemiol. 2011;21(6):430–9. https://doi.org/10.1016/j.annepidem.2011.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vijaya L, et al. Predictors for incidence of primary open-angle glaucoma in a South Indian population. Ophthalmology. 2014;121(7):1370–6. https://doi.org/10.1016/j.ophtha.2014.01.014.

    Article  PubMed  Google Scholar 

  49. Yamamoto S, et al. Primary open-angle glaucoma in a population associated with high prevalence of primary angle-closure glaucoma. Ophthalmology. 2014;121(8):1558–65. https://doi.org/10.1016/j.ophtha.2014.03.003.

    Article  PubMed  Google Scholar 

  50. Zhao D, et al. Diabetes, glucose metabolism, and glaucoma: the 2005–2008 National Health and Nutrition Examination Survey. PLoS ONE. 2014;9(11): e112460. https://doi.org/10.1371/journal.pone.0112460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim MJ, et al. Risk factors for open-angle glaucoma with normal baseline intraocular pressure in a young population: the Korea National Health and Nutrition Examination Survey. Clin Exp Ophthalmol. 2014;42(9):825–32. https://doi.org/10.1111/ceo.12347.

  52. Ko F, et al. Diabetes, triglyceride levels, and other risk factors for glaucoma in the national health and nutrition examination survey 2005–2008. Invest Opthalmol Vis Sci. 2016;57(4):2152. https://doi.org/10.1167/iovs.15-18373.

    Article  CAS  Google Scholar 

  53. Horwitz A, et al. Danish Nationwide data reveal a link between diabetes mellitus, diabetic retinopathy, and glaucoma. J Diabetes Res. 2016;2016:1–10. https://doi.org/10.1155/2016/2684674.

    Article  Google Scholar 

  54. Jung Y, et al. Type 2 diabetes mellitus and risk of open-angle glaucoma development in Koreans: An 11-year nationwide propensity-score-matched study. Diabetes Metab. 2017;44(4):328–32. https://doi.org/10.1016/j.diabet.2017.09.007.

    Article  PubMed  Google Scholar 

  55. Rim TH, et al. Increased risk of open-angle glaucoma among patients with diabetes mellitus: a 10-year follow-up nationwide cohort study. Acta Ophthalmol. 2018;96(8):e1025–30. https://doi.org/10.1111/aos.13805.

    Article  CAS  PubMed  Google Scholar 

  56. Gangwani RA, et al. Detection of glaucoma and its association with diabetic retinopathy in a diabetic retinopathy screening program. J Glaucoma. 2016;25(1):101–5. https://doi.org/10.1097/IJG.0000000000000138.

    Article  PubMed  Google Scholar 

  57. Kreft D, et al. Prevalence, incidence, and risk factors of primary open-angle glaucoma - a cohort study based on longitudinal data from a German public health insurance. BMC Public Health. 2019;19(1):851. https://doi.org/10.1186/s12889-019-6935-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Newman-Casey PA, et al. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmology. 2011;118(7):1318–26. https://doi.org/10.1016/j.ophtha.2010.11.022.

    Article  PubMed  Google Scholar 

  59. Zhou M, et al. Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS ONE. 2014;9(8): e102972. https://doi.org/10.1371/journal.pone.0102972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Y, Chen X. Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol. 2017;10(9):1430–5. https://doi.org/10.18240/ijo.2017.09.16.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21(6):609–14. https://doi.org/10.1111/j.1464-5491.2004.01173.x.

    Article  CAS  PubMed  Google Scholar 

  62. Kim SW, Kang GW. Diabetes mellitus as a risk factor for glaucoma outcome in Korea. Acta Ophthalmol. 2017;95(7):e662–4. https://doi.org/10.1111/aos.13345.

    Article  PubMed  Google Scholar 

  63. • Grzybowski A, et al. Primary Open angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019. J Clin Med. 2020;9(3):761. https://doi.org/10.3390/jcm9030761. Description: A recent meta-analysis study about the association between diabetes and POAG. The author reported a positive association between diabetes and increased IOP (but not POAG) based on population-based studies.

    Article  PubMed Central  Google Scholar 

  64. Xu L, et al. Ocular and systemic factors associated with diabetes mellitus in the adult population in rural and urban China. Beijing Eye Study Eye (Lond). 2009;23(3):676–82. https://doi.org/10.1038/sj.eye.6703104.

    Article  CAS  Google Scholar 

  65. Tham Y, Cheng C. Associations between chronic systemic diseases and primary open angle glaucoma: an epidemiological perspective. Clin Experiment Ophthalmol. 2017;45(1):24–32. https://doi.org/10.1111/ceo.12763.

    Article  PubMed  Google Scholar 

  66. Khatri A, et al. Severity of primary open-angle glaucoma in patients with hypertension and diabetes. Diabetes Metab Syndr Obes: Targets Ther. 2018;11:209–15. https://doi.org/10.2147/DMSO.S160978.

    Article  Google Scholar 

  67. Li Y, et al. Age-controlled correlation between oral glucose tolerance test (OGTT) and thicknesses of ten retinal layers in non-diabetes and prediabetes participants from macular optical coherence tomography (OCT) volume scans. Invest Ophthalmol Vis Sci. 2021;62(8):2438.

    Google Scholar 

  68. Rao HL, et al. Optical coherence tomography angiography and visual field progression in primary angle closure glaucoma. J Glaucoma. 2021;30(3):e61–7. https://doi.org/10.1097/IJG.0000000000001745.

    Article  PubMed  Google Scholar 

  69. Lee K, et al. Risk Factors associated with structural progression in normal-tension glaucoma: intraocular pressure, systemic blood pressure, and myopia. Invest Opthalmol Vis Sci. 2020;61(8):35. https://doi.org/10.1167/iovs.61.8.35.

    Article  Google Scholar 

  70. Hassan FK, et al. Optical coherence tomography indices for diagnosis of chronic glaucoma in patients with diabetes mellitus: a pilot study. Int Ophthalmol. 2021;41(2):409–20. https://doi.org/10.1007/s10792-020-01590-3.

    Article  PubMed  Google Scholar 

  71. Gordon MO, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–20. https://doi.org/10.1001/archopht.120.6.714. Discussion 829-30.

    Article  PubMed  Google Scholar 

  72. Gordon MO, Beiser JA, Kass MA. Is a history of diabetes mellitus protective against developing primary open-angle glaucoma? Arch Ophthalmol. 2008;126(2):280–1. https://doi.org/10.1001/archophthalmol.2007.35.

    Article  PubMed  Google Scholar 

  73. Charlson ES, et al. The Primary Open-Angle African American Glaucoma Genetics study: baseline demographics. Ophthalmology. 2015;122(4):711–20. https://doi.org/10.1016/j.ophtha.2014.11.015.

    Article  PubMed  Google Scholar 

  74. Khachatryan N, et al. Primary Open-Angle African American Glaucoma Genetics (POAAGG) Study: gender and risk of POAG in African Americans. PLoS ONE. 2019;14(8): e0218804. https://doi.org/10.1371/journal.pone.0218804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akkaya S, Can E, Öztürk F. Comparison of optic nerve head topographic parameters in patients with primary open-angle glaucoma with and without diabetes mellitus. J Glaucoma. 2016;25(1):49–53. https://doi.org/10.1097/IJG.0000000000000096.

    Article  PubMed  Google Scholar 

  76. Akkaya S, Can E, Öztürk F. Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol. 2016;36(5):727–36. https://doi.org/10.1007/s10792-016-0191-x.

    Article  PubMed  Google Scholar 

  77. Kosior-Jarecka E, et al. Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma. Acta Ophthalmol. 2019;97(1):68–73. https://doi.org/10.1111/aos.13848.

    Article  PubMed  Google Scholar 

  78. Abikoye TM, et al. Is primary open-angle glaucoma a risk factor for diabetic retinopathy? Int Ophthalmol. 2020;40(12):3233–40. https://doi.org/10.1007/s10792-020-01507-0.

    Article  PubMed  Google Scholar 

  79. Behera UC, et al. Spectrum of Eye Disease in Diabetes (SPEED) in India: a prospective facility-based study. Report # 4. Glaucoma in people with type 2 diabetes mellitus. Indian J Ophthalmol. 2020;68(Suppl 1):S32–6. https://doi.org/10.4103/ijo.IJO_1948_19.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sim YS, et al. Increased prelaminar tissue thickness in patients with open-angle glaucoma and type 2 diabetes. PLoS ONE. 2019;14(2): e0211641. https://doi.org/10.1371/journal.pone.0211641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhong ZL, Chen S. Indicating and predicting role of the horizontal C/D ratio in preclinical diabetic retinopathy associated with chronic angle-closure glaucoma. Int J Ophthalmol. 2019;12(2):268–74. https://doi.org/10.18240/ijo.2019.02.13.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yokomichi H, et al. Evaluation of the associations between changes in intraocular pressure and metabolic syndrome parameters: a retrospective cohort study in Japan. BMJ Open. 2016;6(3): e010360. https://doi.org/10.1136/bmjopen-2015-010360.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kawase K, et al. Ocular and systemic factors related to intraocular pressure in Japanese adults: the Tajimi study. Br J Ophthalmol. 2008;92(9):1175–9. https://doi.org/10.1136/bjo.2007.128819.

    Article  CAS  PubMed  Google Scholar 

  84. Oh SW, et al. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabetes Metab Res Rev. 2005;21(5):434–40. https://doi.org/10.1002/dmrr.529.

    Article  CAS  PubMed  Google Scholar 

  85. Cohen E, et al. Relationship between serum glucose levels and intraocular pressure, a population-based cross-sectional study. J Glaucoma. 2017;26(7):652–6. https://doi.org/10.1097/IJG.0000000000000700.

    Article  PubMed  Google Scholar 

  86. Beisswenger PJ, et al. Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes. 1995;44(7):824–9. https://doi.org/10.2337/diab.44.7.824.

    Article  CAS  PubMed  Google Scholar 

  87. Schweitzer C, et al. Autofluorescence of skin advanced glycation end products as a risk factor for open angle glaucoma: the ALIENOR Study. Invest Ophthalmol Vis Sci. 2018;59(1):75–84. https://doi.org/10.1167/iovs.17-22316.

    Article  CAS  PubMed  Google Scholar 

  88. Park CH, Kim JW. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol. 2012;26(2):123. https://doi.org/10.3341/kjo.2012.26.2.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alexander JP, Acott TS. Involvement of protein kinase C in TNFα regulation of trabecular matrix metalloproteinases and TIMPs. Invest Ophthalmol Vis Sci. 2001;42(12):2831–8.

    CAS  PubMed  Google Scholar 

  90. Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-β in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol. 2002;46(3):249–53. https://doi.org/10.1016/S0021-5155(01)00523-8.

    Article  CAS  PubMed  Google Scholar 

  91. Shepard AR, et al. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51(4):2067–76. https://doi.org/10.1167/iovs.09-4567.

    Article  PubMed  Google Scholar 

  92. Vojnikovic B. Hyperviscosity in whole blood, plasma, and aqueous humor decreased by doxium (calcium dobesilate) in diabetics with retinopathy and glaucoma: a double-blind controlled study. Ophthalmic Res. 1984;16(3):150–62. https://doi.org/10.1159/000265311.

    Article  CAS  PubMed  Google Scholar 

  93. Luo X, et al. Direct and indirect associations between diabetes and intraocular pressure: the Singapore Epidemiology of Eye Diseases Study. Invest Ophthalmol Vis Sci. 2018;59(5):2205–11. https://doi.org/10.1167/iovs.17-23013.

    Article  CAS  PubMed  Google Scholar 

  94. Matteo Ciccone M. Endothelial function in pre-diabetes, diabetes and diabetic cardiomyopathy: a review. Journal of Diabetes & Metabolism. 2014;05(04):364. https://doi.org/10.4172/2155-6156.1000364.

    Article  CAS  Google Scholar 

  95. Brannick B, Wynn A, Dagogo-Jack S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp Biol Med. 2016;241(12):1323–31. https://doi.org/10.1177/1535370216654227.

    Article  CAS  Google Scholar 

  96. Wang Y, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci. 2011;52(2):840–5. https://doi.org/10.1167/iovs.10-5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dimitrova G, et al. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190–6.

    Article  Google Scholar 

  98. Shoshani Y, et al. Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Experiment Ophthalmol. 2012;40(7):697–705. https://doi.org/10.1111/j.1442-9071.2012.02778.x.

    Article  PubMed  Google Scholar 

  99. Lee E, et al. The influence of retinal blood flow on open-angle glaucoma in patients with and without diabetes. Eur J Ophthalmol. 2014;24(4):542–9. https://doi.org/10.5301/ejo.5000419.

    Article  PubMed  Google Scholar 

  100. Flammer J, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93. https://doi.org/10.1016/S1350-9462(02)00008-3.

    Article  PubMed  Google Scholar 

  101. Luo X, et al. Ocular blood flow autoregulation mechanisms and methods. J Ophthalmol. 2015;2015: 864871. https://doi.org/10.1155/2015/864871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lesk MR, Wajszilber M, Deschenes MC. The effects of systemic medications on ocular blood flow. Can J Ophthalmol. 2008;43(3):351–5. https://doi.org/10.3129/i08-057.

    Article  PubMed  Google Scholar 

  103. Nath M, Halder N, Velpandian T. Circulating biomarkers in glaucoma, age-related macular degeneration, and diabetic retinopathy. Indian J Ophthalmol. 2017;65(3):191. https://doi.org/10.4103/ijo.IJO_866_16.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ozden S, et al. Basal serum nitric oxide levels in patients with type 2 diabetes mellitus and different stages of retinopathy. Can J Ophthalmol. 2003;38(5):393–6. https://doi.org/10.1016/s0008-4182(03)80051-0.

    Article  PubMed  Google Scholar 

  105. López-Riquelme N, et al. Endothelin-1 levels and biomarkers of oxidative stress in glaucoma patients. Int Ophthalmol. 2015;35(4):527–32. https://doi.org/10.1007/s10792-014-9979-8.

    Article  PubMed  Google Scholar 

  106. Rajendran R, et al. Assessment of vascular function in complete glycaemic spectrum. Clin Exp Hypertens. 2021;43(5):436–42. https://doi.org/10.1080/10641963.2021.1896729.

    Article  CAS  PubMed  Google Scholar 

  107. Javadiyan S, et al. Elevation of serum asymmetrical and symmetrical dimethylarginine in patients with advanced glaucoma. Invest Ophthalmol Vis Sci. 2012;53(4):1923–7. https://doi.org/10.1167/iovs.11-8420.

    Article  CAS  PubMed  Google Scholar 

  108. Salvatore S, Vingolo EM. Endothelin-1 role in human eye: a review. J Ophthalmol. 2010;2010: 354645. https://doi.org/10.1155/2010/354645.

    Article  CAS  PubMed  Google Scholar 

  109. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23(7):1496–508. https://doi.org/10.1038/eye.2009.108.

    Article  CAS  Google Scholar 

  110. Erkens R, et al. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radical Biol Med. 2021;165:265–81. https://doi.org/10.1016/j.freeradbiomed.2021.01.040.

    Article  CAS  Google Scholar 

  111. Chaurasia SS, et al. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Sci Rep. 2018;8(1):2847. https://doi.org/10.1038/s41598-018-21198-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chi W, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1 beta production in acute glaucoma. Proc Natl Acad Sci. 2014;111(30):11181–6. https://doi.org/10.1073/pnas.1402819111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sugiyama T. Role of P2X7 receptors in the development of diabetic retinopathy. World J Diabetes. 2014;5(2):141. https://doi.org/10.4239/wjd.v5.i2.141.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Niyadurupola N, et al. P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. Invest Ophthalmol Vis Sci. 2013;54(3):2163–70. https://doi.org/10.1167/iovs.12-10968.

    Article  CAS  PubMed  Google Scholar 

  115. LaPar DJ, et al. Acute hyperglycemic exacerbation of lung ischemia–reperfusion injury is mediated by receptor for advanced glycation end-products signaling. Am J Respir Cell Mol Biol. 2012;46(3):299–305. https://doi.org/10.1165/rcmb.2011-0247OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stefansson E, et al. Retinal oximetry discovers novel biomarkers in retinal and brain diseases. Invest Ophthalmol Vis Sci. 2017;58(6):BIO227–33. https://doi.org/10.1167/iovs.17-21776.

    Article  PubMed  Google Scholar 

  117. Lazzara F, et al. Stabilization of HIF-1α in Human retinal endothelial cells modulates expression of mirnas and proangiogenic growth factors. Front Pharmacol. 2020;11:1063. https://doi.org/10.3389/fphar.2020.01063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tezel G, Wax MB. Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol. 2004;122(9):1348–56. https://doi.org/10.1001/archopht.122.9.1348.

    Article  CAS  PubMed  Google Scholar 

  119. McDonnell F, et al. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells. PLoS ONE. 2016;11(4): e0153354. https://doi.org/10.1371/journal.pone.0153354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chihara E. Myopia and diabetes mellitus as modificatory factors of glaucomatous optic neuropathy. Jpn J Ophthalmol. 2014;58(1):16–25. https://doi.org/10.1007/s10384-013-0267-3.

    Article  PubMed  Google Scholar 

  121. De Clerck EEB, et al. Loss of Temporal peripapillary retinal nerve fibers in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study. Invest Ophthalmol Vis Sci. 2017;58:1017–27. https://doi.org/10.1167/iovs.16-19638.

    Article  Google Scholar 

  122. Jeon SJ, et al. Characteristics of Retinal Nerve Fiber Layer Defect in Nonglaucomatous Eyes With Type II Diabetes. Invest Ophthalmol Vis Sci. 2016;57(10):4008–15. https://doi.org/10.1167/iovs.16-19525.

    Article  PubMed  Google Scholar 

  123. • Jung KI, Woo JE, Park CK. Intraocular pressure fluctuation and neurodegeneration in the diabetic rat retina. Br J Pharmacol. 2020;177(13):3046–59. https://doi.org/10.1111/bph.15033. Description: This study provides evidence of gliosis, neuroinflammation, and neurodegeneration induces by experimental diabetes. Glaucoma medication can reduce those pathological damages and improve RGCs survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ly A, et al. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Invest Ophthalmol Vis Sci. 2011;52(13):9316–26. https://doi.org/10.1167/iovs.11-7879.

    Article  CAS  PubMed  Google Scholar 

  125. Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial Reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000;41(7):1971–80.

    CAS  PubMed  Google Scholar 

  126. Rolev KD, Shu X, Ying Y. Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy. Neuropharmacology. 2021;187: 108498. https://doi.org/10.1016/j.neuropharm.2021.108498.

    Article  CAS  PubMed  Google Scholar 

  127. Barber AJ, et al. Neural apoptosis in the retina during experimental and human diabetes. J Clin Invest. 1998;102(4):783–91. https://doi.org/10.1172/JCI2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hondur G, et al. Oxidative stress-related molecular biomarker candidates for glaucoma. Invest Ophthalmol Vis Sci. 2017;58(10):4078–88. https://doi.org/10.1167/iovs.17-22242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Terai N, et al. Diabetes mellitus affects biomechanical properties of the optic nerve head in the rat. Ophthalmic Res. 2012;47(4):189–94. https://doi.org/10.1159/000331990.

    Article  PubMed  Google Scholar 

  130. Boote C, et al. Scleral structure and biomechanics. Prog Retin Eye Res. 2020;74: 100773. https://doi.org/10.1016/j.preteyeres.2019.100773.

    Article  CAS  PubMed  Google Scholar 

  131. Gaspar JM, et al. Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals. Neuroscience. 2010;169(4):1589–600. https://doi.org/10.1016/j.neuroscience.2010.06.021.

    Article  CAS  PubMed  Google Scholar 

  132. Han G, et al. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-3beta in cultured rat retinal cells. Invest Ophthalmol Vis Sci. 2014;55(9):5616–28. https://doi.org/10.1167/iovs.14-14371.

    Article  CAS  PubMed  Google Scholar 

  133. • Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Curr DiabRep. 2016;16(12):124. https://doi.org/10.1007/s11892-016-0815-6. Description: This review summarized risk factors and epidemiological association for glaucoma in the population with diabetes.

    Article  Google Scholar 

  134. Baptista FI, et al. Diabetes induces changes in KIF1A, KIF5B and dynein distribution in the rat retina: Implications for axonal transport. Exp Eye Res. 2014;127:91–103. https://doi.org/10.1016/j.exer.2014.07.011.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang L, et al. Retrograde axonal transport impairment of large- and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res. 2000;20(2):131–6.

    Article  CAS  Google Scholar 

  136. Seki M, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes. 2004;53(9):2412–9. https://doi.org/10.2337/diabetes.53.9.2412.

    Article  CAS  PubMed  Google Scholar 

  137. Pease ME, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41(3):764–74.

    CAS  PubMed  Google Scholar 

  138. Shiga Y, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27(8):1486–96. https://doi.org/10.1093/hmg/ddy053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kanai M, et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018;50(3):390–400. https://doi.org/10.1038/s41588-018-0047-6.

    Article  CAS  PubMed  Google Scholar 

  140. Shen L, et al. Diabetes pathology and risk of primary open-angle glaucoma: evaluating causal mechanisms by using genetic information. Am J Epidemiol. 2015;183(2):147–55. https://doi.org/10.1093/aje/kwv204.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wang Y, et al. Interaction between XRCC 1 gene polymorphisms and diabetes on susceptibility to primary open-angle glaucoma. Exp Biol Med. 2019;244(7):588–92. https://doi.org/10.1177/1535370219842791.

    Article  CAS  Google Scholar 

  142. Laville V, et al. Genetic correlations between diabetes and glaucoma: an analysis of continuous and dichotomous phenotypes. Am J Ophthalmol. 2019;206:245–55. https://doi.org/10.1016/j.ajo.2019.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ebneter A, et al. Protection of retinal ganglion cells and the optic nerve during short-term hyperglycemia in experimental glaucoma. Arch Ophthalmol. 2011;129(10):1337–44. https://doi.org/10.1001/archophthalmol.2011.269.

    Article  PubMed  Google Scholar 

  144. Nishijima K, et al. Vascular endothelial growth factor-a is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 2007;171(1):53–67. https://doi.org/10.2353/ajpath.2007.061237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Foxton RH, et al. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182(4):1379–90. https://doi.org/10.1016/j.ajpath.2012.12.032.

    Article  CAS  PubMed  Google Scholar 

  146. Kopić A. Retinal nerve fiber layer thickness in glaucoma patients treated with multiple intravitreal anti-Vegf (bevacizumab) injections. Acta Clinica Croatica. 2017;56(3):406–14. https://doi.org/10.20471/acc.2017.56.03.07.

    Article  PubMed  Google Scholar 

  147. Quigley HA. Can diabetes be good for glaucoma? Why can’t we believe our own eyes (or data)? Arch Ophthalmol (1960). 2009;127(2):222–9. https://doi.org/10.1001/archophthalmol.2008.596.

    Article  Google Scholar 

  148. Obrenovitch TP. Molecular Physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev. 2008;88(1):211–47. https://doi.org/10.1152/physrev.00039.2006.

    Article  CAS  PubMed  Google Scholar 

  149. Zhu Y, Zhang L, Gidday JM. Role of hypoxia-inducible factor-1alpha in preconditioning-induced protection of retinal ganglion cells in glaucoma. Mol Vis. 2013;19:2360–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen H, et al. TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway. Chem Biol Interact. 2020;331: 109249. https://doi.org/10.1016/j.cbi.2020.109249.

    Article  CAS  PubMed  Google Scholar 

  151. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S151–67. https://doi.org/10.2337/dc21-S011.

    Article  Google Scholar 

  152. Silva PS, et al. Comparison of nondiabetic retinal findings identified with nonmydriatic fundus photography vs ultrawide field imaging in an ocular Telehealth program. JAMA Ophthalmol. 2016;134(3):330–4. https://doi.org/10.1001/jamaophthalmol.2015.5605.

    Article  PubMed  Google Scholar 

  153. Jeong SY, et al. Spectral-domain optical coherence tomography features in open-angle glaucoma with diabetes mellitus and inadequate glycemic control. Invest Opthalmol Vis Sci. 2016;57(7):3024. https://doi.org/10.1167/iovs.16-19457R1.

    Article  CAS  Google Scholar 

  154. Zheng Y, et al. Influence of diabetes and diabetic retinopathy on the performance of Heidelberg retina tomography II for diagnosis of glaucoma. Invest Ophthalmol Vis Sci. 2010;51(11):5519–24. https://doi.org/10.1167/iovs.09-5060.

    Article  PubMed  Google Scholar 

  155. Ong HS, Levin S, Vafidis G. Glaucoma detection using optic disc images from the English National Screening Programme for Diabetic Retinopathy. J Glaucoma. 2013;22(6):496–500. https://doi.org/10.1097/IJG.0b013e3182447d58.

    Article  PubMed  Google Scholar 

  156. Ramm L, et al. Intraocular pressure measurement using ocular response analyzer, dynamic contour tonometer, and scheimpflug analyzer Corvis ST. J Ophthalmol. 2019;2019:3879651. https://doi.org/10.1155/2019/3879651.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bilong Y, et al. Smartphone-assisted glaucoma screening in patients with type 2 diabetes: a pilot study. Med Hypothesis Discov Innov Ophthalmol. 2020;9(1):61–5.

    PubMed  PubMed Central  Google Scholar 

  158. Anton Apreutesei N, et al. Predictions of ocular changes caused by diabetes in glaucoma patients. Comput Methods Programs Biomed. 2018;154:183–90. https://doi.org/10.1016/j.cmpb.2017.11.013.

    Article  PubMed  Google Scholar 

  159. Lee DJ, et al. Dilated eye examination screening guideline compliance among patients with diabetes without a diabetic retinopathy diagnosis: the role of geographic access. BMJ Open Diabetes Res Care. 2014;2(1): e000031. https://doi.org/10.1136/bmjdrc-2014-000031.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ayub R, et al. Outcomes and reasons for late presentation of lens induced glaucoma. Ophthalmol Glaucoma. 2021;S2589–4196(21):00033–8. https://doi.org/10.1016/j.ogla.2021.01.005.

    Article  Google Scholar 

  161. Mitchell W, Hassall M, Henderson T. Updating the model of eye care for Aboriginal populations in remote Central Australia. Clin Exp Ophthalmol. 2020;48(9):1299–306. https://doi.org/10.1111/ceo.13838.

    Article  PubMed  Google Scholar 

  162. Hou H, et al. Progression of Primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018;189:1–9. https://doi.org/10.1016/j.ajo.2018.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lin H, et al. Association of Geroprotective Effects of Metformin and Risk of Open-Angle Glaucoma in Persons with Diabetes Mellitus. JAMA Ophthalmology. 2015;133(8):915. https://doi.org/10.1001/jamaophthalmol.2015.1440.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kim YS, et al. Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 2017;492(3):397–403. https://doi.org/10.1016/j.bbrc.2017.08.087.

    Article  CAS  PubMed  Google Scholar 

  165. Investigators AGIS. The advanced glaucoma intervention study (AGIS): 11. risk factors for failure of trabeculectomy and argon laser trabeculoplasty. Am J Ophthalmol. 2002;134(4):481–98. https://doi.org/10.1016/S0002-9394(02)01658-6.

    Article  Google Scholar 

  166. Investigators AGIS. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol. 2002;134(4):499–512. https://doi.org/10.1016/S0002-9394(02)01659-8.

    Article  Google Scholar 

  167. Liu J, et al. Long-term outcomes of primary trabeculectomy in diabetic patients without retinopathy with primary angle-closure glaucoma. J Ophthalmol. 2017;2017:7947854. https://doi.org/10.1155/2017/7947854.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Musch DC, et al. Visual field progression in the collaborative initial glaucoma treatment study. Ophthalmology. 2009;116(2):200-207.e1. https://doi.org/10.1016/j.ophtha.2008.08.051.

    Article  PubMed  Google Scholar 

  169. Law SK, et al. Long-term outcomes of primary trabeculectomy in diabetic patients with primary open angle glaucoma. Br J Ophthalmol. 2013;97(5):561–6. https://doi.org/10.1136/bjophthalmol-2012-302227.

    Article  PubMed  Google Scholar 

  170. Mariotti C, et al. Long-term outcomes and risk factors for failure with the EX-press glaucoma drainage device. Eye. 2014;28(1):1–8. https://doi.org/10.1038/eye.2013.234.

    Article  CAS  PubMed  Google Scholar 

  171. Huddleston SM, et al. Aqueous Shunt Exposure. J Glaucoma. 2013;22(6):433–8. https://doi.org/10.1097/IJG.0b013e3181f3e5b4.

    Article  PubMed  Google Scholar 

  172. Browning AC, et al. Effect of diabetes mellitus and hyperglycemia on the proliferation of human Tenon’s capsule fibroblasts: implications for wound healing after glaucoma drainage surgery. Wound Repair Regen. 2005;13(3):295–302. https://doi.org/10.1111/j.1067-1927.2005.00130312.x.

    Article  PubMed  Google Scholar 

  173. Denk PO, et al. Effect of growth factors on the activation of human Tenon’s capsule fibroblasts. Curr Eye Res. 2003;27(1):35–44. https://doi.org/10.1076/ceyr.27.2.35.15456.

    Article  PubMed  Google Scholar 

Download references

Funding

Tobias Elze is supported by NIH R01 EY030575-01, NIH R21 EY030631-01, NSF STTR1937931, and BrightFocus Foundation. Nazlee Zebardast was supported in part by the MEE Institutional Startup Fund and NEI/NIH K23 career development award K23EY032634. All authors are supported by NIH core grant P30 EY003790.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design, drafting and critical revision, and final approval of this manuscript.

Corresponding author

Correspondence to Nazlee Zebardast.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

All authors have no relevant employment information to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nazlee Zebardast and Tobias Elze are co-senior authors.

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Mitchell, W., Elze, T. et al. Association Between Diabetes, Diabetic Retinopathy, and Glaucoma. Curr Diab Rep 21, 38 (2021). https://doi.org/10.1007/s11892-021-01404-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01404-5

Keywords

Navigation