Sleep Extension: A Potential Target for Obesity Treatment

Abstract

Purpose of Review

Sleep and obesity share a bidirectional relationship, and weight loss has been shown to enhance sleep. Aiming to extend sleep on its own or as part of a lifestyle intervention may attenuate health consequences of short sleep. This review highlights several sleep extension approaches, discusses feasibility of each, and summarizes findings relevant to obesity.

Recent Findings

Sleep extension in response to experimental sleep restriction demonstrates partial rescue of cardiometabolic dysfunction in some but not all studies. Adequate sleep on a nightly basis may be necessary for optimal health. While initial sleep extension interventions in habitually short sleepers have been met with obstacles, preliminary findings suggest that sleep extension or sleep hygiene interventions may improve glycemic control, decrease blood pressure, and enhance weight loss.

Summary

Sleep extension has the potential to attenuate obesity risk and cardiometabolic dysfunction. There is tremendous opportunity for future research that establishes a minimum threshold for sleep extension effectiveness and addresses logistical barriers identified in seminal studies.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1:210–7. https://doi.org/10.1371/journal.pmed.0010062.

    CAS  Article  Google Scholar 

  2. 2.

    Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of healthy sleep duration among adults — United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:137–41. https://doi.org/10.15585/mmwr.mm6506a1.

    Article  PubMed  Google Scholar 

  3. 3.

    Consensus Conference Panel, Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: methodology and discussion. Sleep. 2015;38:1161–83. https://doi.org/10.5665/sleep.4886.

    Article  PubMed Central  Google Scholar 

  4. 4.

    Centers for Disease Control and Prevention. Perceived insufficient rest or sleep among adults—United States, 2008. In: Morb Mortal Wkly Rep. 2008. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5842a2.htm. Accessed 12/26/2019 2019.

  5. 5.

    Ford ES, Li C, Wheaton AG, Chapman DP, Perry GS, Croft JB. Sleep duration and body mass index and waist circumference among US adults. Obesity (Silver Spring). 2014;22:598–607. https://doi.org/10.1002/oby.20558.

    Article  Google Scholar 

  6. 6.

    Jean-Louis G, Williams NJ, Sarpong D, Pandey A, Youngstedt S, Zizi F, et al. Associations between inadequate sleep and obesity in the US adult population: analysis of the national health interview survey. (1977-2009). BMC Public Health. 2014;14:290. https://doi.org/10.1186/1471-2458-14-290.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chaput J-P, Després J-P, Bouchard C, Tremblay A. The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study. Sleep. 2008;31:517–23.

    Article  Google Scholar 

  8. 8.

    Hasler G, Buysse DJ, Klaghofer R, Gamma A, Ajdacic V, Eich D, et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27:661–6.

    Article  Google Scholar 

  9. 9.

    Chaput JP, Bouchard C, Tremblay A. Change in sleep duration and visceral fat accumulation over 6 years in adults. Obesity (Silver Spring). 2014;22(5):E9–12. https://doi.org/10.1002/oby.20701.

    Article  Google Scholar 

  10. 10.

    • Yu H, Lu J, Jia P, Liu C, Cheng J. Experimental sleep restriction effect on adult body weight: a meta-analysis. Sleep Breath. 2019;23(4):1341–50. https://doi.org/10.1007/s11325-019-01828-0A meta-analysis including six randomized controlled trials reporting body weight outcomes during sleep restriction compared to normal sleep. No difference in body weight or composition were found; however, sex specific differences may exist.

    Article  PubMed  Google Scholar 

  11. 11.

    • Zhu B, Shi C, Park CG, Zhao X, Reutrakul S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2019;45:18–30. https://doi.org/10.1016/j.smrv.2019.02.002A meta-analysis of 41 randomized controlled trials showing increased body weight, hunger, and brain activity related to food stimuli were increased along with a decrease in insulin sensitivity during sleep restriction.

    Article  PubMed  Google Scholar 

  12. 12.

    • Al Khatib HK, Harding SV, Darzi J, Pot GK. The effects of partial sleep deprivation on energy balance: a systematic review and meta-analysis. Eur J Clin Nutr. 2017;71(5):614–24. https://doi.org/10.1038/ejcn.2016.201A meta-analysis of 11 randomized controlled trials reporting that the positive energy balance observed during sleep restriction likely comes from an excessive increase in energy intake.

    Article  PubMed  Google Scholar 

  13. 13.

    Shechter A, O'Keeffe M, Roberts AL, Zammit GK, RoyChoudhury A, St-Onge M-P. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance. Am J Phys Regul Integr Comp Phys. 2012;303(9):R883–R9.

    CAS  Google Scholar 

  14. 14.

    • Bhutani S, Howard JD, Reynolds R, Zee PC, Gottfried J, Kahnt T. Olfactory connectivity mediates sleep-dependent food choices in humans. Elife. 2019;8. https://doi.org/10.7554/eLife.49053This study provides human evidence supporting that increased energy intake following sleep restriction is influenced by food-based decision making via effects of the the endocannabinoid system.

  15. 15.

    St-Onge MP, Wolfe S, Sy M, Shechter A, Hirsch J. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int J Obesity (Lond). 2014;38(3):411–6. https://doi.org/10.1038/ijo.2013.114.

    Article  Google Scholar 

  16. 16.

    Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90. https://doi.org/10.5665/sleep.2792.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Baron KG, Reid KJ, Kern AS, Zee PC. Role of sleep timing in caloric intake and BMI. Obesity (Silver Spring). 2011;19(7):1374–81. https://doi.org/10.1038/oby.2011.100.

    Article  Google Scholar 

  18. 18.

    Wang Y, Mei H, Jiang YR, Sun WQ, Song YJ, Liu SJ, et al. Relationship between duration of sleep and hypertension in adults: a meta-analysis. J Clin Sleep Med. 2015;11:1047–56. https://doi.org/10.5664/jcsm.5024.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38:529–37. https://doi.org/10.2337/dc14-2073.

    Article  PubMed  Google Scholar 

  20. 20.

    Lee SWH, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis. Sleep Med Rev. 2017;31:91–101. https://doi.org/10.1016/j.smrv.2016.02.001.

    Article  PubMed  Google Scholar 

  21. 21.

    Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I. Habitual sleep duration associated with self-reported and objectively-determined cardiometabolic risk factors. Sleep Med. 2014;15:42–50. https://doi.org/10.1016/J.SLEEP.2013.09.012.

    Article  PubMed  Google Scholar 

  22. 22.

    Patel SR, Zhu X, Storfer-Isser A, Mehra R, Jenny NS, Tracy R, et al. Sleep duration and biomarkers of inflammation. Sleep. 2009;32:200–4.

    Article  Google Scholar 

  23. 23.

    Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 2016;80(1):40–52. https://doi.org/10.1016/j.biopsych.2015.05.014.

    Article  PubMed  Google Scholar 

  24. 24.

    Buysse DJ. Sleep health: can we define it? Does it matter? Sleep. 2014;37(1):9–17. https://doi.org/10.5665/sleep.3298.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Czeisler CA. Duration, timing and quality of sleep are each vital for health, performance and safety. Sleep Health. 2015;1(1):5–8. https://doi.org/10.1016/j.sleh.2014.12.008.

    Article  PubMed  Google Scholar 

  26. 26.

    Rosique-Esteban N, Papandreou C, Romaguera D, Warnberg J, Corella D, Martinez-Gonzalez MA, et al. Cross-sectional associations of objectively-measured sleep characteristics with obesity and type 2 diabetes in the PREDIMED-Plus trial. Sleep. 2018;41(12). https://doi.org/10.1093/sleep/zsy190.

  27. 27.

    •• Lunsford-Avery JR, Engelhard MM, Navar AM, Kollins SH. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci Rep. 2018;8(1):14158. https://doi.org/10.1038/s41598-018-32402-5An observational study using a sleep regularity index connecting sleep variabity with cardiometabolic risk and psychological distress.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kobayashi D, Takahashi O, Shimbo T, Okubo T, Arioka H, Fukui T. High sleep duration variability is an independent risk factor for weight gain. Sleep Breath. 2013;17:167–72. https://doi.org/10.1007/s11325-012-0665-7.

    Article  PubMed  Google Scholar 

  29. 29.

    Zhou M, Lalani C, Banda JA, Robinson TN. Sleep duration, timing, variability and measures of adiposity among 8- to 12-year-old children with obesity. Obes Sci Pract. 2018;4:535–44. https://doi.org/10.1002/osp4.303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    • Phillips AJK, Clerx WM, O’Brien CS, Sano A, Barger LK, Picard RW, et al. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep. 2017;7(1):3216. https://doi.org/10.1038/s41598-017-03171-4Findings indicate that sleep varibility represents characteristics of sleep that may not be reflected by sleep duration alone and demonstrates the physiological importance of sleep regularity via a circadian link.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mota MC, Silva CM, Balieiro LCT, Gonçalves BF, Fahmy WM, Crispim CA. Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLoS One. 2019;14(2):e0212126. https://doi.org/10.1371/journal.pone.0212126.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zuraikat FM, Makarem N, Liao M, St-Onge MP, Aggarwal B. Measures of poor sleep quality are associated with higher energy intake and poor diet quality in a diverse sample of women from the go red for women strategically focused research network. J Am Heart Assoc. 2020;9(4):e014587. https://doi.org/10.1161/jaha.119.014587.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A. 2008;105(3):1044–9. https://doi.org/10.1073/pnas.0706446105.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Resta O, Foschino-Barbaro MP, Legari G, Talamo S, Bonfitto P, Palumbo A, et al. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes. 2001;25:669–75. https://doi.org/10.1038/sj.ijo.0801603.

    CAS  Article  Google Scholar 

  35. 35.

    Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32:1017–9. https://doi.org/10.2337/dc08-1776.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Malhotra A, White DP. Obstructive sleep apnoea. Lancet. 2002;360(9328):237–45. https://doi.org/10.1016/S0140-6736(02)09464-3.

    Article  PubMed  Google Scholar 

  37. 37.

    Elder CR, Gullion CM, Funk KL, Debar LL, Lindberg NM, Stevens VJ. Impact of sleep, screen time, depression and stress on weight change in the intensive weight loss phase of the LIFE study. Int J Obes. 2012;36:86–92. https://doi.org/10.1038/ijo.2011.60.

    CAS  Article  Google Scholar 

  38. 38.

    Thomson CA, Morrow KL, Flatt SW, Wertheim BC, Perfect MM, Ravia JJ, et al. Relationship between sleep quality and quantity and weight loss in women participating in a weight-loss intervention trial. Obesity. 2012;20:1419–25. https://doi.org/10.1038/oby.2012.62.

    Article  PubMed  Google Scholar 

  39. 39.

    Chaput J-P, Tremblay A. Sleeping habits predict the magnitude of fat loss in adults exposed to moderate caloric restriction. Obes Facts. 2012;5:561–6. https://doi.org/10.1159/000342054.

    Article  PubMed  Google Scholar 

  40. 40.

    Sawamoto R, Nozaki T, Furukawa T, Tanahashi T, Morita C, Hata T, et al. Higher sleep fragmentation predicts a lower magnitude of weight loss in overweight and obese women participating in a weight-loss intervention. Nutr Diabetes. 2014;4:e144. https://doi.org/10.1038/nutd.2014.41https://www.nature.com/articles/nutd201441-supplementary-information.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    •• Papandreou C, Bulló M, Díaz-López A, Martínez-González MA, Corella D, Castañer O, et al. High sleep variability predicts a blunted weight loss response and short sleep duration a reduced decrease in waist circumference in the PREDIMED-Plus Trial. Int J Obes. 2019;44:330–9. https://doi.org/10.1038/s41366-019-0401-5First study to objectively measure sleep varaibility during a weight loss intervention. Findings indicated that sleep varaiblity was assoaciated with weight loss after 12 months and assocaited sleep dration with greater decreases in waist circumference.

    Article  Google Scholar 

  42. 42.

    Alfaris N, Wadden TA, Sarwer DB, Diwald L, Volger S, Hong P, et al. Effects of a 2-year behavioral weight loss intervention on sleep and mood in obese individuals treated in primary care practice. Obesity (Silver Spring). 2015;23(3):558–64.

    Article  Google Scholar 

  43. 43.

    Chaput J-P, Drapeau V, Hetherington M, Lemieux S, Provencher V, Tremblay A. Psychobiological impact of a progressive weight loss program in obese men. Physiol Behav. 2005;86(1):224–32.

    CAS  Article  Google Scholar 

  44. 44.

    Martin CK, Bhapkar M, Pittas AG, Pieper CF, Das SK, Williamson DA, et al. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults the CALERIE 2 randomized clinical trial. JAMA Intern Med. 2016;176:743–52. https://doi.org/10.1001/jamainternmed.2016.1189.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9. https://doi.org/10.1016/S0140-6736(99)01376-8.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Spiegel K, Leproult R, L’Hermite-Balériaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71. https://doi.org/10.1210/jc.2004-1003.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Wauters M, Considine RV, Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator. Eur J Endocrinol. 2000;143(3):293–311. https://doi.org/10.1530/eje.0.1430293.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43. https://doi.org/10.1126/scitranslmed.3003200.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci. 2013;110(14):5695–700. https://doi.org/10.1073/pnas.1216951110.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Calvin AD, Carter RE, Adachi T, Macedo PG, Albuquerque FN, van der Walt C, et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest. 2013;144(1):79–86. https://doi.org/10.1378/chest.12-2829.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Broussard JL, Wroblewski K, Kilkus JM, Tasali E. Two nights of recovery sleep reverses the effects of short-term sleep restriction on diabetes risk. Diabetes Care. 2016;39(3):e40–1. https://doi.org/10.2337/dc15-2214.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    van Leeuwen W, Hublin C, Sallinen M, Härmä M, Hirvonen A, Porkka-Heiskanen T. Prolonged sleep restriction affects glucose metabolism in healthy young men. Int J Endocrinol. 2010;2010.

  53. 53.

    Eckel Robert H, Depner Christopher M, Perreault L, Markwald Rachel R, Smith Mark R, McHill Andrew W, et al. Morning circadian misalignment during short sleep duration impacts insulin sensitivity. Curr Biol. 2015;25(22):3004–10. https://doi.org/10.1016/j.cub.2015.10.011.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    van Leeuwen WMA, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One. 2009;4(2):e4589. https://doi.org/10.1371/journal.pone.0004589.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pejovic S, Basta M, Vgontzas AN, Kritikou I, Shaffer ML, Tsaoussoglou M, et al. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab. 2013;305(7):E890–E6. https://doi.org/10.1152/ajpendo.00301.2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    van Leeuwen WMA, Sallinen M, Virkkala J, Lindholm H, Hirvonen A, Hublin C, et al. Physiological and autonomic stress responses after prolonged sleep restriction and subsequent recovery sleep in healthy young men. Sleep Biol Rhythms. 2018;16(1):45–54. https://doi.org/10.1007/s41105-017-0122-x.

    Article  PubMed  Google Scholar 

  57. 57.

    Monk TH, Buysse DJ, Rose LR, Hall JA, Kupfer DJ. The sleep of healthy people--a diary study. Chronobiol Int. 2000;17(1):49–60. https://doi.org/10.1081/cbi-100101031.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Killick R, Hoyos CM, Melehan KL, Dungan GC 2nd, Poh J, Liu PY. Metabolic and hormonal effects of 'catch-up' sleep in men with chronic, repetitive, lifestyle-driven sleep restriction. Clin Endocrinol. 2017;83(4):498–507. https://doi.org/10.1111/cen.12747.

    CAS  Article  Google Scholar 

  59. 59.

    Kubo T, Takahashi M, Sato T, Sasaki T, Oka T, Iwasaki K. Weekend sleep intervention for workers with habitually short sleep periods. Scand J Work Environ Health. 2011;(5):418–26. https://doi.org/10.5271/sjweh.3162.

  60. 60.

    •• Depner CM, Melanson EL, Eckel RH, Snell-Bergeon JK, Perreault L, Bergman BC, et al. Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr Biol. 2019;29(6):957–67.e4. https://doi.org/10.1016/j.cub.2019.01.069Weekend sleep extension in response to weekday sleep restriction does not sufficently repay sleep debt and only partially mitigates obeisty risk and cardiometabolic dysfunction as determined with hyperinsulemic-euglycemic clamp.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Reynold AM, Bowles ER, Saxena A, Fayad R, Youngstedt SD. Negative effects of time in bed extension: a pilot study. J Sleep Med Disord. 2014;1(1).

  62. 62.

    Im HJ, Baek SH, Chu MK, Yang KI, Kim WJ, Park SH, et al. Association between weekend catch-up sleep and lower body mass: population-based study. Sleep. 2017;40(7). https://doi.org/10.1093/sleep/zsx089.

  63. 63.

    Larsen SC, Horgan G, Mikkelsen M-LK, Palmeira AL, Scott S, Duarte C, et al. Consistent sleep onset and maintenance of body weight after weight loss: an analysis of data from the NoHoW trial. PLoS Med. 2020;17(7):e1003168. https://doi.org/10.1371/journal.pmed.1003168.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    • Stock AA, Lee S, Nahmod NG, Chang AM. Effects of sleep extension on sleep duration, sleepiness, and blood pressure in college students. Sleep Health. 2020;6(1):32–9. https://doi.org/10.1016/j.sleh.2019.10.003This study showed significant decreases in systolic blood pressure with moderate sleep extension in a group of normal and short sleeping young adults without hypertension.

    Article  PubMed  Google Scholar 

  65. 65.

    Papandreou C, Bulló M, Díaz-López A, Martínez-González MA, Corella D, Castañer O, et al. High sleep variability predicts a blunted weight loss response and short sleep duration a reduced decrease in waist circumference in the PREDIMED-Plus Trial. Int J Obes. 2020;44(2):330–9. https://doi.org/10.1038/s41366-019-0401-5.

    Article  Google Scholar 

  66. 66.

    Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–33. https://doi.org/10.3945/ajcn.2008.26574.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    •• Wang X, Sparks JR, Bowyer KP, Youngstedt SD. Influence of sleep restriction on weight loss outcomes associated with caloric restriction. Sleep. 2018. https://doi.org/10.1093/sleep/zsy027First weightloss intervention to evaluate changes in body composition and substrate utilization under habitual short sleeping conditions. Results indicate similar overall weight loss but blunted fat mass loss in the sleep restricted group compared to normal sleeping group.

  68. 68.

    Chen X, Niu X, Xiao Y, Dong J, Lu M, Kong W. Effect of continuous positive airway pressure on leptin levels in patients with obstructive sleep apnea: a meta-analysis. Otolaryngol Head Neck Surg. 2015;152(4):610–8. https://doi.org/10.1177/0194599814562719.

    Article  PubMed  Google Scholar 

  69. 69.

    Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153:435–41. https://doi.org/10.7326/0003-4819-153-7-201010050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210. https://doi.org/10.1016/j.smrv.2007.07.007.

    Article  PubMed  Google Scholar 

  71. 71.

    Mason IC, Qian J, Adler GK, Scheer FAJL. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020;63:462–72. https://doi.org/10.1007/s00125-019-05059-6.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    • Al Khatib HK, Hall WL, Creedon A, Ooi E, Masri T, McGowan L, et al. Sleep extension is a feasible lifestyle intervention in free-living adults who are habitually short sleepers: a potential strategy for decreasing intake of free sugars? A randomized controlled pilot study. Am J Clin Nutr. 2018;107(1):43–53. https://doi.org/10.1093/ajcn/nqx030One of the few free-living sleep extention interventions in habaitually short sleepers. Body weight and objective indicatiors of hunger were unchanged, but diet was improved by reduced sugar intake.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Tasali E, Chapotot F, Wroblewski K, Schoeller D. The effects of extended bedtimes on sleep duration and food desire in overweight young adults: a home-based intervention. Appetite. 2014;80:220–4. https://doi.org/10.1016/j.appet.2014.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Leproult R, Deliens G, Gilson M, Peigneux P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep. 2015;38(5):707–15. https://doi.org/10.5665/sleep.4660.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    So-Ngern A, Chirakalwasan N, Saetung S, Chanprasertyothin S, Thakkinstian A, Reutrakul S. Effects of two-week sleep extension on glucose metabolism in chronically sleep-deprived individuals. J Clin Sleep Med. 2019;15(5):711–8. https://doi.org/10.5664/jcsm.7758.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Haack M, Serrador J, Cohen D, Simpson N, Meier-Ewert H, Mullington JM. Increasing sleep duration to lower beat-to-beat blood pressure: a pilot study. J Sleep Res. 2013;22(3):295–304. https://doi.org/10.1111/jsr.12011.

    Article  PubMed  Google Scholar 

  77. 77.

    Cizza G, Piaggi P, Rother KI, Csako G. Hawthorne effect with transient behavioral and biochemical changes in a randomized controlled sleep extension trial of chronically short-sleeping obese adults: implications for the design and interpretation of clinical studies. PLoS One. 2014;9(8):e104176. https://doi.org/10.1371/journal.pone.0104176.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Lucassen EA, Piaggi P, Dsurney J, de Jonge L, Zhao XC, Mattingly MS, et al. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals. PLoS One. 2014;9(1):e84832. https://doi.org/10.1371/journal.pone.0084832.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    • Baron Kelly G, Duffecy J, Richardson D, Avery E, Rothschild S, Lane J. Technology assisted behavior intervention to extend sleep among adults with short sleep duration and prehypertension/stage 1 hypertension: a randomized pilot feasibility study. J Clin Sleep Med. 2019;15(11):1587–97. https://doi.org/10.5664/jcsm.8018A small pilot study reporting marked improvements in blood pressure after a sleep hygiene intervention that resulted in clinically relevant increases in sleep duration.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    McGrath ER, Espie CA, Power A, Murphy AW, Newell J, Kelly C, et al. Sleep to lower elevated blood pressure: a randomized controlled trial (SLEPT). Am J Hypertens. 2017;30(3):319–27. https://doi.org/10.1093/ajh/hpw132.

    Article  PubMed  Google Scholar 

  81. 81.

    Sawamoto R, Nozaki T, Furukawa T, Tanahashi T, Morita C, Hata T, et al. A change in objective sleep duration is associated with a change in the serum adiponectin level of women with overweight or obesity undergoing weight loss intervention. Obes Sci Pract. 2016;2(2):180–8. https://doi.org/10.1002/osp4.32.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Logue EE, Bourguet CC, Palmieri PA, Scott ED, Matthews BA, Dudley P, et al. The better weight-better sleep study: a pilot intervention in primary care. Am J Health Behav. 2012;36(3):319–34. https://doi.org/10.5993/ajhb.36.3.4.

    Article  PubMed  Google Scholar 

  83. 83.

    Demos KE, Leahey TM, Hart CN, Trautvetter J, Coward PR, Duszlak J, et al. A pilot randomized controlled trial testing the effects of a routine-based intervention on outcomes in a behavioural weight loss programme. Obes Sci Pract. 2015;1(2):110–8. https://doi.org/10.1002/osp4.16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    •• Moreno-Frias C, Figueroa-Vega N, Malacara JM. Sleep extension increases the effect of caloric restriction over body weight and improves the chronic low-grade inflammation in adolescents with obesity. J Adolesc Health. 2020. https://doi.org/10.1016/j.jadohealth.2019.11.301First weight loss intervention to show that sleep extension in conjuction with weight loss in adolescents may elicit superlative weightloss outcomes related to cardiometabolic health.

  85. 85.

    Basner M, Fomberstein KM, Razavi FM, Banks S, William JH, Rosa RR, et al. American time use survey: sleep time and its relationship to waking activities. Sleep. 2007;30(9):1085–95. https://doi.org/10.1093/sleep/30.9.1085.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Mudaliar U, Zabetian A, Goodman M, Echouffo-Tcheugui JB, Albright AL, Gregg EW, et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med. 2016;13(7):e1002095-e. https://doi.org/10.1371/journal.pmed.1002095.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519–28.

    Article  Google Scholar 

  88. 88.

    Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404–18. https://doi.org/10.1038/nrn.2017.55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Broussard JL, Kilkus JM, Delebecque F, Abraham V, Day A, Whitmore HR, et al. Elevated ghrelin predicts food intake during experimental sleep restriction. Obesity. 2016;24(1):132–8. https://doi.org/10.1002/oby.21321.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Diabetes Prevention Program Research Group. The diabetes prevention program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71. https://doi.org/10.2337/diacare.25.12.2165.

    Article  Google Scholar 

  91. 91.

    Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS, Johnson KC, et al. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24(5):610–28. https://doi.org/10.1016/s0197-2456(03)00064-3.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported in part by the National Institute of Health grants F31HL151232 (KSP), P20GM109036 (LAB) and R01DK091718 (LAB), and U54GM104940 (JPK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristin K. Hoddy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoddy, K.K., Potts, K.S., Bazzano, L.A. et al. Sleep Extension: A Potential Target for Obesity Treatment. Curr Diab Rep 20, 81 (2020). https://doi.org/10.1007/s11892-020-01360-6

Download citation

Keywords

  • Insulin sensitivity
  • Blood pressure
  • Sleep recovery
  • Sleep extension
  • Catch-up sleep
  • Sleep hygiene