Skip to main content
Log in

Bariatric Surgery in the Treatment of Type 2 Diabetes

  • Therapies and New Technologies in the Treatment of Diabetes (M Pietropaolo, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We seek to characterize the impact of bariatric surgery on diabetes mellitus by recalling its history, examining the clinical data, exploring the putative mechanisms of action, and anticipating its future.

Recent Findings

Results of clinical trials reveal that bariatric surgery induces remission of diabetes in 33–90% of individuals at 1-year post-treatment versus 0–39% of medically managed. Remission rates decrease over time but remain higher in surgically treated individuals. Investigations have revealed numerous actions of surgery including effects on intestinal physiology, neuronal signaling, incretin hormone secretion, bile acid metabolism, and microbiome changes.

Summary

Bariatric surgery improves control of diabetes through both weight-dependent and weight-independent actions. These various mechanisms help explain the difference between individuals treated surgically vs. medically. They also explain differing effects of various bariatric surgery procedure types. Understanding how surgery affects diabetes will help optimize utilization of the therapy for both disease prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sims EA, Danforth E, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res. 1973;29:457–96.

    CAS  PubMed  Google Scholar 

  2. Pappachan JM, Viswanath AK. Medical management of diabesity: do we have realistic targets? Curr Diab Rep. 2017;17(1):4.

    Article  PubMed  Google Scholar 

  3. Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clin Diabetes Endocrinol. 2017;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Diabetes [Internet]. [cited 2019 Jun 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes

  5. Obesity and overweight [Internet]. [cited 2019 Jun 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  6. Foster D, Sanchez-Collins S, Cheskin LJ. Erratum: multidisciplinary team-based obesity treatment in patients with diabetes: current practices and the state of the science. Diabetes Spectrum 2017;30:244–249 (DOI: https://doi.org/10.2337/ds17-0045). Diabetes Spectr. 2018;31(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):854–65.

  8. Wing RR, Reboussin D, Lewis CE, Look AHEAD Research group. Intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(24):2358–9.

    CAS  PubMed  Google Scholar 

  9. Rothberg AE, McEwen LN, Fraser T, Burant CF, Herman WH. The impact of a managed care obesity intervention on clinical outcomes and costs: a prospective observational study. Obesity (Silver Spring). 2013;21(11):2157–62.

    Article  Google Scholar 

  10. Yang W, Dall TM, Tan E, Byrne E, Iacobucci W, Chakrabarti R, et al. Diabetes diagnosis and management among insured adults across metropolitan areas in the U.S. Prev Med Rep. 2018;10:227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ayyad C, Andersen T. Long-term efficacy of dietary treatment of obesity: a systematic review of studies published between 1931 and 1999. Obes Rev. 2000;1(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wing RR, Marcus MD, Epstein LH, Salata R. Type II diabetic subjects lose less weight than their overweight nondiabetic spouses. Diabetes Care. 1987;10(5):563–6.

    Article  CAS  PubMed  Google Scholar 

  14. Guare JC, Wing RR, Grant A. Comparison of obese NIDDM and nondiabetic women: short- and long-term weight loss. Obes Res. 1995;3(4):329–35.

    Article  CAS  PubMed  Google Scholar 

  15. Celio AC, Pories WJ. A history of bariatric surgery: the maturation of a medical discipline. Surg Clin North Am. 2016;96(4):655–67.

    Article  PubMed  Google Scholar 

  16. Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.

    Article  CAS  PubMed  Google Scholar 

  18. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.

    Article  PubMed Central  Google Scholar 

  19. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    Article  CAS  PubMed  Google Scholar 

  20. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43.

    Article  CAS  PubMed  Google Scholar 

  21. Almind K, Doria A, Kahn CR. Putting the genes for type II diabetes on the map. Nat Med. 2001;7(3):277–9.

    Article  CAS  PubMed  Google Scholar 

  22. American Diabetes Association. 5. Lifestyle management: Standards of Medical Care in Diabetes—2019. Dia Care. 2019 Jan;42(Supplement 1):S46–60.

  23. UK Prospective Diabetes Study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients, UKPDS Group. Metab Clin Exp. 1990 Sep;39(9):905–12.

  24. Pi-Sunyer FX. Weight loss in type 2 diabetic patients. Diabetes Care. 2005;28(6):1526–7.

    Article  PubMed  Google Scholar 

  25. Joy SV, Rodgers PT, Scates AC. Incretin mimetics as emerging treatments for type 2 diabetes. Ann Pharmacother. 2005;39(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rose F, Bloom S, Tan T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opin Drug Discovery. 2019;29:1–9.

    Google Scholar 

  27. Cai X, Yang W, Gao X, Chen Y, Zhou L, Zhang S, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis: SGLT2 inhibitor dosage and weight reduction. Obesity. 2018;26(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  28. Story of Obesity Surgery [Internet]. American Society for Metabolic and Bariatric Surgery. 2004 [cited 2019 Jun 19]. Available from: https://asmbs.org/resources/story-of-obesity-surgery

  29. Faria GR. A brief history of bariatric surgery: porto biomedical. Journal. 2017;2(3):90–2.

    Google Scholar 

  30. Gumbs AA, Gagner M, Dakin G, Pomp A. Sleeve gastrectomy for morbid obesity. Obes Surg. 2007;17(7):962–9.

    Article  PubMed  Google Scholar 

  31. Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014;24(8):1126–35.

    Article  PubMed  Google Scholar 

  32. Peck BCE, Seeley RJ. How does “metabolic surgery” work its magic? New evidence for gut microbiota. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):81–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Herbst CA, Hughes TA, Gwynne JT, Buckwalter JA. Gastric bariatric operation in insulin-treated adults. Surgery. 1984;95(2):209–14.

    CAS  PubMed  Google Scholar 

  34. Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville gastric bypass. Ann Surg. 1987;206(3):316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sjöström L, Lindroos A-K, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  36. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84 discussion 84-85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.

    Article  PubMed  Google Scholar 

  38. Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23(1):93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  41. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Salminen P, Helmiö M, Ovaska J, Juuti A, Leivonen M, Peromaa-Haavisto P, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y Gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319(3):241. This RCT compares LSG to RYGB with follow-up for up to 5 years.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • Jakobsen GS, Småstuen MC, Sandbu R, Nordstrand N, Hofsø D, Lindberg M, et al. Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA. 2018;319(3):291. This large study evaluates resolution of complications in patients undergoing bariatric surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  44. • Madsen LR, Baggesen LM, Richelsen B, Thomsen RW. Effect of Roux-en-Y gastric bypass surgery on diabetes remission and complications in individuals with type 2 diabetes: a Danish population-based matched cohort study. Diabetologia. 2019;62(4):611–20. One of the largest studies to date evaluating diabetes outcomes following bariatric surgery.

    Article  PubMed  Google Scholar 

  45. Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle Intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150(10):931–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ding S-A, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  48. Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51. RCT with rigorous lifestyle intervention control group focused on diabetes outcomes following bariatric surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Courcoulas AP, King WC, Belle SH, Berk P, Flum DR, Garcia L, et al. Seven-year weight trajectories and health outcomes in the longitudinal assessment of bariatric surgery (LABS) study. JAMA Surg. 2018;153(5):427.

    Article  PubMed  Google Scholar 

  51. • Ikramuddin S, Korner J, Lee W-J, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle Intervention and Medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A 1c , LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA. 2018;319(3):266. Five-year follow-up of RCT comparing medical management with RYGB.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • Lager CJ, Esfandiari NH, Luo Y, Subauste AR, Kraftson AT, Brown MB, et al. Metabolic Parameters, Weight Loss, and Comorbidities 4 years after Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2018;28(11):3415–23. Retrospective analysis comparing metabolic outcomes in RYGB versus LSG.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care. 2018;41(4):670–9. RCT evaluating RYGB versus lifestyle management in patients with type 2 diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Isaman DJM, Rothberg AE, Herman WH. Reconciliation of type 2 diabetes remission rates in studies of Roux-en-Y gastric bypass. Diabetes Care. 2016;39(12):2247–53.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Halperin F, Ding S-A, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013 Jul;101(1):50–6.

    Article  PubMed  Google Scholar 

  59. Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes. 2013;62(9):3027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sjöström L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden Å, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.

    Article  PubMed  CAS  Google Scholar 

  61. Bradley D, Conte C, Mittendorfer B, Eagon JC, Varela JE, Fabbrini E, et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J Clin Invest. 2012;122(12):4667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peterli R, Wölnerhanssen BK, Peters T, Vetter D, Kröll D, Borbély Y, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A, Bouillot J-L, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kong L-C, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot J-L, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  66. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Arora T, Seyfried F, Docherty NG, Tremaroli V, le Roux CW, Perkins R, et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J. 2017;11(9):2035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jørgensen NB, Dirksen C, Bojsen-Møller KN, Jacobsen SH, Worm D, Hansen DL, et al. Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62(9):3044–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35.

    Article  PubMed  CAS  Google Scholar 

  71. Bose M, Teixeira J, Olivan B, Bawa B, Arias S, Machineni S, et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J Diabetes. 2010;2(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  72. Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–16.

    Article  PubMed  CAS  Google Scholar 

  73. Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Phys Regul Integr Comp Phys. 2014;306(5):R352–62.

    CAS  Google Scholar 

  74. Wilson-Pérez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab. 2014;3(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  76. Jiménez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes. 2014;63(10):3372–7.

    Article  PubMed  CAS  Google Scholar 

  77. Behary P, Tharakan G, Alexiadou K, Johnson N, Wewer Albrechtsen NJ, Kenkre J, et al. Combined GLP-1, oxyntomodulin, and peptide YY improves body weight and glycemia in obesity and Prediabetes/type 2 diabetes: a randomized single-blinded placebo controlled study. Diabetes Care. 2019;8.

  78. • Hayoz C, Hermann T, Raptis DA, Brönnimann A, Peterli R, Zuber M. Comparison of metabolic outcomes in patients undergoing laparoscopic roux-en-Y gastric bypass versus sleeve gastrectomy - a systematic review and meta-analysis of randomised controlled trials. Swiss Med Wkly. 2018;148:w14633. Meta-analysis of RCTs comparing RYGB and LSG.

  79. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Thaler JP, Cummings DE. Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.

    Article  CAS  PubMed  Google Scholar 

  81. Arble DM, Sandoval DA, Seeley RJ. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia. 2015;58(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  82. Patel RT, Shukla AP, Ahn SM, Moreira M, Rubino F. Surgical control of obesity and diabetes: the role of intestinal vs. gastric mechanisms in the regulation of body weight and glucose homeostasis: surgical control of obesity and diabetes. Obesity. 2014;22(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  83. Rajagopalan H, Cherrington AD, Thompson CC, Kaplan LM, Rubino F, Mingrone G, et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care. 2016;39(12):2254–61.

    Article  CAS  PubMed  Google Scholar 

  84. Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metab Clin Exp. 2009;58(10):1400–7.

    Article  CAS  PubMed  Google Scholar 

  85. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patti M-E, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7.

    Article  CAS  Google Scholar 

  87. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66(2):226–34.

    Article  CAS  PubMed  Google Scholar 

  89. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dixon JB, Chuang L-M, Chong K, Chen S-C, Lambert GW, Straznicky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  91. Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, Clore JN, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6(3):254–9.

    Article  PubMed  Google Scholar 

  92. Coleman KJ, Haneuse S, Johnson E, Bogart A, Fisher D, O’Connor PJ, et al. Long-term microvascular disease outcomes in patients with type 2 diabetes after bariatric surgery: evidence for the legacy effect of surgery. Diabetes Care. 2016;39(8):1400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Panunzi S, Carlsson L, De Gaetano A, Peltonen M, Rice T, Sjöström L, et al. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 2016;39(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  94. Arterburn DE, Olsen MK, Smith VA, Livingston EH, Van Scoyoc L, Yancy WS, et al. Association between bariatric surgery and long-term survival. JAMA. 2015;313(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  95. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.

    Article  CAS  PubMed  Google Scholar 

  96. Busetto L. Timing of bariatric surgery in people with obesity and diabetes. Ann Transl Med. 2015;3(7):94.

    PubMed  PubMed Central  Google Scholar 

  97. le Roux CW, Schauer PR. Prevention is better than cure: the next frontier for bariatric surgery? Ann Intern Med. 2018;169(5):343.

    Article  PubMed  Google Scholar 

  98. Cummings DE, Cohen RV. Beyond BMI: the need for new guidelines governing the use of bariatric and metabolic surgery. The Lancet Diabetes & Endocrinology. 2014;2(2):175–81.

    Article  Google Scholar 

  99. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Alison H. Affinati reports a grant from NIDDK (F32 DK122660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Kraftson.

Ethics declarations

Conflict of Interest

Alison H. Affinati, Nazanene H. Esfandiari, and Andrew T. Kraftson declare that they have no conflict of interest.

Elif A. Oral reports grants from Gi Dynamics; grants, personal fees, and non-financial support from Aegerion Pharmaceuticals; grants and personal fees from Akcea Therapeutics; grants from Ionis Pharmaceuticals; grants and personal fees from Regeneron Pharmaceuticals; and grants from Gemphire Therapeutics. In addition, Dr. Oral has a patent issue on an Intragastric device.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (include name of committee + reference number) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Therapies and New Technologies in the Treatment of Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Affinati, A.H., Esfandiari, N.H., Oral, E.A. et al. Bariatric Surgery in the Treatment of Type 2 Diabetes. Curr Diab Rep 19, 156 (2019). https://doi.org/10.1007/s11892-019-1269-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1269-4

Keywords

Navigation