Exercise in Pregnant Women with Diabetes


Purpose of Review

Diabetes affects an increasing number of pregnancies. Regular exercise is recommended for pregnant women without diabetes, but whether exercise during pregnancy also benefits women with gestational diabetes (GDM) or preexisting (type 1 or type 2) diabetes or if these women have any specific risks is unclear.

Recent Findings

Recent evidence suggests that low- to moderate-intensity exercise improves blood glucose and may delay insulin initiation for women with GDM. Exercise is also safe, with no reports of increased maternal or neonatal complications. Few studies evaluated exercise as adjunct therapy for pregnant women with preexisting diabetes, precluding a thorough assessment in this population.


Low- to moderate-intensity exercise during pregnancy safely improves glycemic control among women with GDM. More studies are needed to evaluate the impact of exercise in pregnant women with preexisting diabetes. Whether a specific type, volume, or timing of activity is most effective is not known.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Feig DS, Hwee J, Shah BR, Booth GL, Bierman AS, Lipscombe LL. Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a large, population-based study in Ontario, Canada, 1996-2010. Diabetes Care 2014;37:1590–1596. Available from: https://doi.org/10.2337/dc13-2717

    Article  Google Scholar 

  2. 2.

    Mackin ST, Nelson SM, Kerssens JJ, Wood R, Wild S, Colhoun HM, et al. Diabetes and pregnancy: national trends over a 15 year period. Diabetologia 2018;61:1081–1088. Available from: https://doi.org/10.1007/s00125-017-4529-3

  3. 3.

    Correa A, Bardenheier B, Elixhauser A, Geiss LS, Gregg E. Trends in prevalence of diabetes among delivery hospitalizations, United States, 1993-2009. Matern Child Health J NIH Public Access. 2015;19:635–42 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24996952.

    Article  Google Scholar 

  4. 4.

    Coton SJ, Nazareth I, Petersen I. A cohort study of trends in the prevalence of pregestational diabetes in pregnancy recorded in UK general practice between 1995 and 2012. BMJ Open 2016;6:e009494. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26810997.

    Article  Google Scholar 

  5. 5.

    Deputy N, Kim S, Conrey E, Bullard K. Prevalence and changes in preexisting diabetes and gestational diabetes among women who had a live birth — United States, 2012–2016. MMWR Morb Mortal Wkly Rep. 2018;67:1201–7.

    Article  Google Scholar 

  6. 6.

    HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18463375.

    Article  Google Scholar 

  7. 7.

    Sacks DA, Black MH, Li X, Montoro MN, Lawrence JM. Adverse pregnancy outcomes using the International Association of the Diabetes and Pregnancy Study Groups Criteria. Obstet Gynecol. 2015;126:67–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26241258.

    Article  Google Scholar 

  8. 8.

    Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med. 2009;361:1339–48 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19797280.

    CAS  Article  Google Scholar 

  9. 9.

    Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352:2477–86 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15951574.

    CAS  Article  Google Scholar 

  10. 10.

    Benhalima K, Robyns K, Van Crombrugge P, Deprez N, Seynhave B, Devlieger R, et al. Differences in pregnancy outcomes and characteristics between insulin- and diet-treated women with gestational diabetes. BMC Pregnancy Childbirth. 2015;15:271 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26497130.

    Article  Google Scholar 

  11. 11.

    American Diabetes Association. 13. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018;41:S137–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29222384

  12. 12.

    Feig DS, Berger H, Donovan L, Godbout A, Kader T, Keely E, et al. Diabetes and pregnancy. Can J Diabetes. 2018;42:S255–82 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29650105.

    Article  Google Scholar 

  13. 13.

    Davenport MH, Ruchat S-M, Poitras VJ, Jaramillo Garcia A, Gray CE, Barrowman N, Skow RJ, Meah VL, Riske L, Sobierajski F, James M, Kathol AJ, Nuspl M, Marchand AA, Nagpal TS, Slater LG, Weeks A, Adamo KB, Davies GA, Barakat R, Mottola MF Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br J Sports Med 2018;52:1367–1375. Available from: https://doi.org/10.1136/bjsports-2018-099355

    Article  Google Scholar 

  14. 14.

    ACOG Committee Opinion No. 650: Physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol 2015;126:e135–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26595585.

  15. 15.

    Dipietro L, Evenson KR, Bloodgood B, Sprow K, Troiano RP, Piercy KL, et al. Benefits of physical activity during pregnancy and postpartum. Med Sci Sports Exerc. 2019;51:1292–302 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31095086.

    Article  Google Scholar 

  16. 16.

    Caspersen CJ. Physical activity epidemiology: concepts, methods, and applications to exercise science. Exerc Sport Sci Rev. 1989;17:423–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/2676554.

    CAS  PubMed  Google Scholar 

  17. 17.

    Pettee Gabriel KK, Morrow JR, Woolsey A-LT. Framework for physical activity as a complex and multidimensional behavior. J Phys Act Health. 2012;9(Suppl 1):S11–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22287443.

    Article  Google Scholar 

  18. 18.

    Mann S, Beedie C, Balducci S, Zanuso S, Allgrove J, Bertiato F, et al. Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. Diabetes Metab Res Rev. 2014;30:257–68 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24130081.

    CAS  Article  Google Scholar 

  19. 19.

    Pan B, Ge L, Xun Y, Chen Y, Gao C, Han X, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:72 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30045740.

    Article  Google Scholar 

  20. 20.

    Bohn B, Herbst A, Pfeifer M, Krakow D, Zimny S, Kopp F, Melmer A, Steinacker JM, Holl RW, DPV Initiative Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients. Diabetes Care 2015;38:1536–1543. Available from: https://doi.org/10.2337/dc15-0030

    Article  Google Scholar 

  21. 21.

    Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106:393–400 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25451913.

    Article  Google Scholar 

  22. 22.

    Wu N, Bredin S, Guan Y, Dickinson K, Kim D, Chua Z, et al. Cardiovascular health benefits of exercise training in persons living with type 1 diabetes: a systematic review and meta-analysis. J Clin Med. 2019;8:253 Available from: http://www.mdpi.com/2077-0383/8/2/253.

    Article  Google Scholar 

  23. 23.

    Ostman C, Jewiss D, King N, Smart NA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;139:380–91 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29223408.

    CAS  Article  Google Scholar 

  24. 24.

    Fahey AJ, Paramalingam N, Davey RJ, Davis EA, Jones TW, Fournier PA. The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:4193–200 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22962428.

    CAS  Article  Google Scholar 

  25. 25.

    Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, Boulay P, Khandwala F, Sigal RJ Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care 2013;36:537–542. Available from: https://doi.org/10.2337/dc12-0963

    Article  Google Scholar 

  26. 26.

    Camacho RC, Galassetti P, Davis SN, Wasserman DH. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc Sport Sci Rev. 2005;33:17–23 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15640716.

    PubMed  Google Scholar 

  27. 27.

    Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5:377–90 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28126459.

    Article  Google Scholar 

  28. 28.

    García-Patterson A, Gich I, Amini SB, Catalano PM, de Leiva A, Corcoy R. Insulin requirements throughout pregnancy in women with type 1 diabetes mellitus: three changes of direction. Diabetologia 2010;53:446–451. Available from: https://doi.org/10.1007/s00125-009-1633-z

    Article  Google Scholar 

  29. 29.

    • Mottola MF, Davenport MH, Ruchat S-M, Davies GA, Poitras VJ, Gray CE, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2018;52:1339–46 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30337460. Recommendations for physical activity in pregnancy, based on updated literature review and subgroup analysis of exercise in women with gestational diabetes.

    Article  Google Scholar 

  30. 30.

    Savvaki D, Taousani E, Goulis DG, Tsirou E, Voziki E, Douda H, et al. Guidelines for exercise during normal pregnancy and gestational diabetes: a review of international recommendations. Hormones. 2018;17:521–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30511333.

    Article  Google Scholar 

  31. 31.

    Ruchat S-M, Mottola MF, Skow RJ, Nagpal TS, Meah VL, James M, Riske L, Sobierajski F, Kathol AJ, Marchand AA, Nuspl M, Weeks A, Gray CE, Poitras VJ, Jaramillo Garcia A, Barrowman N, Slater LG, Adamo KB, Davies GA, Barakat R, Davenport MH Effectiveness of exercise interventions in the prevention of excessive gestational weight gain and postpartum weight retention: a systematic review and meta-analysis. Br J Sports Med 2018;52:1347–1356. Available from: https://doi.org/10.1136/bjsports-2018-099399

    Article  Google Scholar 

  32. 32.

    Ming W-K, Ding W, Zhang CJP, Zhong L, Long Y, Li Z, et al. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018;18:440 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30419848.

    Article  Google Scholar 

  33. 33.

    Yu Y, Xie R, Shen C, Shu L. Effect of exercise during pregnancy to prevent gestational diabetes mellitus: a systematic review and meta-analysis. J Matern Neonatal Med. 2018;31:1632–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28409688.

    Article  Google Scholar 

  34. 34.

    Davenport MH, Kathol AJ, Mottola MF, Skow RJ, Meah VL, Poitras VJ, Jaramillo Garcia A, Gray CE, Barrowman N, Riske L, Sobierajski F, James M, Nagpal T, Marchand AA, Slater LG, Adamo KB, Davies GA, Barakat R, Ruchat SM Prenatal exercise is not associated with fetal mortality: a systematic review and meta-analysis. Br J Sports Med 2019;53:108–115. Available from: https://doi.org/10.1136/bjsports-2018-099773

    Article  Google Scholar 

  35. 35.

    • Davenport MH, Ruchat S-M, Sobierajski F, Poitras VJ, Gray CE, Yoo C, et al. Impact of prenatal exercise on maternal harms, labour and delivery outcomes: a systematic review and meta-analysis. Br J Sports Med 2019;53:99–107. Available from: https://doi.org/10.1136/bjsports-2018-099821. Systematic review and meta-analysis of the effects of exercise during pregnancy on maternal outcomes, which showed no difference in maternal complications with exercise in women with gestational diabetes.

    Article  Google Scholar 

  36. 36.

    Richardsen KR, Falk RS, Jenum AK, Mørkrid K, Martinsen EW, Ommundsen Y, et al. Predicting who fails to meet the physical activity guideline in pregnancy: a prospective study of objectively recorded physical activity in a population-based multi-ethnic cohort. BMC Pregnancy Childbirth. 2016;16:186 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27460363.

    Article  Google Scholar 

  37. 37.

    Hesketh KR, Evenson KR. Prevalence of U.S. pregnant women meeting 2015 ACOG physical activity guidelines. Am J Prev Med. 2016;51:e87–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27544437.

    Article  Google Scholar 

  38. 38.

    Harrison CL, Brown WJ, Hayman M, Moran LJ, Redman LM. The role of physical activity in preconception, pregnancy and postpartum health. Semin Reprod Med. 2016;34(2):e28–37.

    Article  Google Scholar 

  39. 39.

    Coll CVN, Domingues MR, Gonçalves H, Bertoldi AD. Perceived barriers to leisure-time physical activity during pregnancy: a literature review of quantitative and qualitative evidence. J Sci Med Sport. 2017;20:17–25 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27372276.

    Article  Google Scholar 

  40. 40.

    Brazeau A-S, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31:2108–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18689694.

    Article  Google Scholar 

  41. 41.

    Santo EC, Forbes PW, Oken E, Belfort MB. Determinants of physical activity frequency and provider advice during pregnancy. BMC Pregnancy Childbirth 2017;17:286. Available from: https://doi.org/10.1186/s12884-017-1460-z

  42. 42.

    McGee LD, Cignetti CA, Sutton A, Harper L, Dubose C, Gould S. Exercise during pregnancy: obstetricians’ beliefs and recommendations compared to American Congress of Obstetricians and Gynecologists’ 2015 guidelines. Cureus. 2018;10:e3204 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30410829.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ferrari RM, Siega-Riz AM, Evenson KR, Moos M-K, Carrier KS. A qualitative study of women’s perceptions of provider advice about diet and physical activity during pregnancy. Patient Educ Couns. 2013;91:372–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23399436.

    Article  Google Scholar 

  44. 44.

    Mottola MF, Artal R. Fetal and maternal metabolic responses to exercise during pregnancy. Early Hum Dev. 2016;94:33–41 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26803360.

    CAS  Article  Google Scholar 

  45. 45.

    Guérin E, Ferraro ZM, Adamo KB, Prud’homme D. The need to objectively measure physical activity during pregnancy: considerations for clinical research and public health impact. Matern Child Health J. 2018;22:637–41 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29411253.

    Article  Google Scholar 

  46. 46.

    Chasan-Taber L, Evenson KR. Next steps for measures of physical activity during pregnancy. Matern Child Health J. 2019;23:567–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30663010.

    Article  Google Scholar 

  47. 47.

    Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30:S112–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17596458.

    CAS  Article  Google Scholar 

  48. 48.

    Gradmark A, Pomeroy J, Renström F, Steiginga S, Persson M, Wright A, Bluck L, Domellöf M, Kahn SE, Mogren I, Franks PW Physical activity, sedentary behaviors, and estimated insulin sensitivity and secretion in pregnant and non-pregnant women. BMC Pregnancy Childbirth 2011;11:44. Available from: https://doi.org/10.1186/1471-2393-11-44

  49. 49.

    van Poppel MNM, Oostdam N, Eekhoff MEW, Wouters MGAJ, van Mechelen W, Catalano PM. Longitudinal relationship of physical activity with insulin sensitivity in overweight and obese pregnant women. J Clin Endocrinol Metab. 2013;98:2929–35 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23837192.

    Article  Google Scholar 

  50. 50.

    • Davenport MH, Sobierajski F, Mottola MF, Skow RJ, Meah VL, Poitras VJ, et al. Glucose responses to acute and chronic exercise during pregnancy: a systematic review and meta-analysis. Br J Sports Med. 2018;52:1357–66 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30337462. Systematic review and meta-analysis of the effects of exercise during pregnancy on glucose levels, which showed lower glucose levels following acute exercise, lower fasting glucose levels with chronic exercise, and no increase in hypoglycemia with exercise in women with gestational diabetes.

    Article  Google Scholar 

  51. 51.

    •• Brown J, Ceysens G, Boulvain M. Exercise for pregnant women with gestational diabetes for improving maternal and fetal outcomes. Cochrane Database Syst Rev. 2017;6:CD012202 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28639706. Cochrane review of 11 RCTs of exercise in pregnant women with gestational diabetes, which showed lower postprandial and fasting glucose levels without increased hypoglycemia and no differences in maternal or neonatal complications with exercise in pregnant women with gestational diabetes.

  52. 52.

    • Cremona A, O’Gorman C, Cotter A, Saunders J, Donnelly A. Effect of exercise modality on markers of insulin sensitivity and blood glucose control in pregnancies complicated with gestational diabetes mellitus: a systematic review. Obes Sci Pract 2018;4:455–467. Available from: https://doi.org/10.1002/osp4.283. Systematic review of the effect of the type of exercise during pregnancy, which showed that the subgroup of women with gestational diabetes had more beneficial effects on lower glucose levels and less insulin requirement with aerobic exercise compared with aerobic or combined aerobic and resistance exercise.

    CAS  Article  Google Scholar 

  53. 53.

    • Sklempe Kokic I, Ivanisevic M, Biolo G, Simunic B, Kokic T, Pisot R. Combination of a structured aerobic and resistance exercise improves glycaemic control in pregnant women diagnosed with gestational diabetes mellitus. A randomised controlled trial. Women and Birth. 2018;31:e232–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29055674. This RCT showed that women with gestational diabetes in a 6-week combined exercise intervention had lower postprandial but not fasting glucose levels.

    Article  Google Scholar 

  54. 54.

    Sklempe Kokic I, Ivanisevic M, Kokic T, Simunic B, Pisot R. Acute responses to structured aerobic and resistance exercise in women with gestational diabetes mellitus. Scand J Med Sci Sports. 2018;28:1793–800 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29461654.

    CAS  Article  Google Scholar 

  55. 55.

    Coe DP, Conger SA, Kendrick JM, Howard BC, Thompson DL, Bassett DR, et al. Postprandial walking reduces glucose levels in women with gestational diabetes mellitus. Appl Physiol Nutr Metab 2018;43:531–534. Available from: https://doi.org/10.1139/apnm-2017-0494

    CAS  Article  Google Scholar 

  56. 56.

    • Symons Downs D, DiNallo JM, Birch LL, Paul IM, Ulbrecht JS. Randomized Face-to-face vs. Home exercise interventions in pregnant women with gestational diabetes. Psychol Sport Exerc. 2017;30:73–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28428728. In this RCT, women with gestational diabetes had no difference in glucose levels at 32 weeks gestation after an aerobic exercise intervention, but a difference in postprandial glucose levels was observed at 36 weeks gestation suggesting that the timing and duration of an exercise intervention may have implications for glucose outcomes.

    Article  Google Scholar 

  57. 57.

    • E-Mekawy HS, Sabbour AA, Radwan MM. Effect of antenatal exercises on umbilical blood flow and neonate wellbeing in diabetic pregnant women. Indian J Physiother Occup Ther. 2012;6:121–5. This non-randomized trial is the only study of exercise in pregnant women with type 2 diabetes, which observed lower average blood glucose following a 10-week bicycling intervention in obese women with type 2 diabetes.

    Google Scholar 

  58. 58.

    • Hollingsworth DR, Moore TR. Postprandial walking exercise in pregnant insulin-dependent (type I) diabetic women: reduction of plasma lipid levels but absence of a significant effect on glycemic control. Am J Obstet Gynecol. 1987;157:1359–63 Available from: http://www.ncbi.nlm.nih.gov/pubmed/3425644. The only RCT of exercise in pregnant women with type 1 diabetes, which observed no differences in glycemic control, insulin doses, or gestational weight gain, but fewer C-sections and lower rates of neonatal complications in the exercise group.

    CAS  Article  Google Scholar 

  59. 59.

    Kumareswaran K, Elleri D, Allen JM, Caldwell K, Westgate K, Brage S, et al. Physical activity energy expenditure and glucose control in pregnant women with type 1 diabetes: is 30 minutes of daily exercise enough? Diabetes Care 2013;36:1095–1101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23404301.

    CAS  Article  Google Scholar 

  60. 60.

    Mazze R, Yogev Y, Langer O. Measuring glucose exposure and variability using continuous glucose monitoring in normal and abnormal glucose metabolism in pregnancy. J Matern Fetal Neonatal Med 2012;25:1171–1175. Available from: https://doi.org/10.3109/14767058.2012.670413

    CAS  Article  Google Scholar 

  61. 61.

    Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and diabetes: a report of a Workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36:1384–95 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23589542.

    CAS  Article  Google Scholar 

  62. 62.

    Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62:98–103 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30553010.

    CAS  Article  Google Scholar 

  63. 63.

    Liubaoerjijin Y, Terada T, Fletcher K, Boulé NG. Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetol. 2016;53:769–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27255501.

    CAS  Article  Google Scholar 

  64. 64.

    Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27926890.

    Article  Google Scholar 

  65. 65.

    • Brown J, Ceysens G, Boulvain M. Exercise for pregnant women with pre-existing diabetes for improving maternal and fetal outcomes. Cochrane Database Syst Rev. 2017;12:CD012696. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29264871. Cochrane review of exercise in pregnant women with pre-existing diabetes, which highlighted the paucity of RCTs addressing this topic, as no studies met criteria for inclusion.

  66. 66.

    Adesegun D, Cai C, Sivak A, Chari R, Davenport MH. Prenatal exercise and pre-gestational diseases: a systematic review and meta-analysis. J Obstet Gynaecol Can. 2018; Available from: https://linkinghub.elsevier.com/retrieve/pii/S170121631830817X.

  67. 67.

    • Davenport MH, Meah VL, Ruchat S-M, Davies GA, Skow RJ, Barrowman N, et al. Impact of prenatal exercise on neonatal and childhood outcomes: a systematic review and meta-analysis. Br J Sports Med 2018;52:1386–1396. Available from: https://doi.org/10.1136/bjsports-2018-099836. Systematic review and meta-analysis of the effects of exercise during pregnancy on offspring, which showed no increase in neonatal complications with exercise in women with gestational diabetes.

    Article  Google Scholar 

  68. 68.

    Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6:CD007529 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28613398.

    PubMed  Google Scholar 

  69. 69.

    Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane database Syst rev 2010;CD008363. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20824875.

  70. 70.

    Alexopoulos A-S, Blair R, Peters AL. Management of preexisting diabetes in pregnancy. JAMA. 2019;321:1811 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31087027.

    Article  Google Scholar 

  71. 71.

    Conway MR, Marshall MR, Schlaff RA, Pfeiffer KA, Pivarnik JM. Physical activity device reliability and validity during pregnancy and postpartum. Med Sci Sports Exerc. 2018;50:617–23 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29077641.

    Article  Google Scholar 

  72. 72.

    Brickwood K-J, Watson G, O’Brien J, Williams AD. Consumer-based wearable activity trackers increase physical activity participation: systematic review and meta-analysis. JMIR mHealth uHealth. 2019;7:e11819 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30977740.

    Article  Google Scholar 

  73. 73.

    Gajanand T, Keating SE, Brown WJ, Hordern MD, Fassett RG, Coombes JS. Comparing the efficacy of supervised and unsupervised exercise training on glycaemic control in type 2 diabetes: a systematic review. Curr Diabetes Rev 2019;15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30747073.

  74. 74.

    Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet, 2017;390:2347–59 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28923465.

  75. 75.

    Scott EM, Bilous RW, Kautzky-Willer A. Accuracy, user acceptability, and safety evaluation for the FreeStyle Libre flash glucose monitoring system when used by pregnant women with diabetes. Diabetes Technol Ther. 2018;20:180–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29470094.

    CAS  Article  Google Scholar 

  76. 76.

    Farrar D, Tuffnell DJ, West J, West HM. Continuous subcutaneous insulin infusion versus multiple daily injections of insulin for pregnant women with diabetes. Cochrane Database Syst Rev 2016;CD005542. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27272351.

  77. 77.

    Stewart ZA, Wilinska ME, Hartnell S, Temple RC, Rayman G, Stanley KP, et al. Closed-loop insulin delivery during pregnancy in women with type 1 diabetes. N Engl J Med. 2016;375:644–54 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27532830.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tricia M. Peters.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Pregnancy



Table 2 Recent systematic reviews and intervention studies of exercise during pregnancy for women with (a) gestational diabetes mellitus, (b) type 2 diabetes, and (c) type 1 diabetes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peters, T.M., Brazeau, AS. Exercise in Pregnant Women with Diabetes. Curr Diab Rep 19, 80 (2019). https://doi.org/10.1007/s11892-019-1204-8

Download citation


  • Diabetes
  • Pregnancy
  • Exercise
  • Physical activity
  • Gestational