Skip to main content

Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application

Abstract

Purpose of Review

This paper systematically reviews the recent progress in diabetic retinopathy screening. It provides an integrated overview of the current state of knowledge of emerging techniques using artificial intelligence integration in national screening programs around the world. Existing methodological approaches and research insights are evaluated. An understanding of existing gaps and future directions is created.

Recent Findings

Over the past decades, artificial intelligence has emerged into the scientific consciousness with breakthroughs that are sparking increasing interest among computer science and medical communities. Specifically, machine learning and deep learning (a subtype of machine learning) applications of artificial intelligence are spreading into areas that previously were thought to be only the purview of humans, and a number of applications in ophthalmology field have been explored. Multiple studies all around the world have demonstrated that such systems can behave on par with clinical experts with robust diagnostic performance in diabetic retinopathy diagnosis. However, only few tools have been evaluated in clinical prospective studies.

Summary

Given the rapid and impressive progress of artificial intelligence technologies, the implementation of deep learning systems into routinely practiced diabetic retinopathy screening could represent a cost-effective alternative to help reduce the incidence of preventable blindness around the world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care. 2016;39(9):1643–9.

    PubMed  Article  Google Scholar 

  2. YauJW, RogersSL, KawasakiR, LamoureuxEL, KowalskiJW, BekT, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012:DC_111909.

  3. Cheung N, Mitchell P. Wong TY. Diabetic retinopathy. 2010;376:13.

    Google Scholar 

  4. SabanayagamC, BanuR, CheeML, LeeR, WangYX, TanG, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol2018.

  5. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77.

    PubMed  Article  Google Scholar 

  6. Klein R, Klein BE. Screening for diabetic retinopathy, revisited. Am J Ophthalmol. 2002;134(2):261–3.

    PubMed  Article  Google Scholar 

  7. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology. 2018;125:1608–22.

    PubMed  Article  Google Scholar 

  8. Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nature Reviews Disease Primers. 2016;2:16012.

    PubMed  Article  Google Scholar 

  9. Huang OS, Zheng Y, Tay WT, Chiang PP-C, Lamoureux EL, Wong TY. Lack of awareness of common eye conditions in the community. Ophthalmic Epidemiol. 2013;20(1):52–60.

    PubMed  Article  Google Scholar 

  10. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018;2(10):719–31.

    PubMed  Article  Google Scholar 

  11. Lee A, Taylor P, Kalpathy-Cramer J, Tufail A. Machine learning has arrived! Ophthalmology. 2017;124(12):1726–8.

    PubMed  Article  Google Scholar 

  12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    CAS  PubMed  Article  Google Scholar 

  13. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

    CAS  PubMed  Article  Google Scholar 

  14. FogelAL, KvedarJC. Artificial intelligence powers digital medicine. npj Digital Medicine. 2018;1(1):5.

  15. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.

    PubMed  Article  Google Scholar 

  16. Ting DS, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology. 2018;286(2):729–31.

    PubMed  Article  Google Scholar 

  17. HwangEJ, ParkS, JinK-N, Kim JI, Choi SY, Lee JH, et al. Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis. 2018.

  18. Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.

    CAS  PubMed  Article  Google Scholar 

  19. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. •• Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23. Findings from this study suggest that deep learning systems can be generalised on different patient cohorts under different settings and conditions.

    PubMed  PubMed Central  Article  Google Scholar 

  21. •• Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402. Findings from this study suggest that deep learning can represent a suitable tool with clinical acceptable sensitivity and specificity for detecting referable diabetic retinopathy.

    PubMed  Article  Google Scholar 

  22. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.

    Article  Google Scholar 

  23. Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25(3):433–8.

    CAS  PubMed  Article  Google Scholar 

  24. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    CAS  PubMed  Article  Google Scholar 

  25. Nsoesie EO. Evaluating artificial intelligence applications in clinical settings. JAMA Netw Open. 2018;1(5):e182658.

    PubMed  Article  Google Scholar 

  26. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Beam AL, Kohane IS. Translating artificial intelligence into clinical care. JAMA. 2016;316(22):2368–9.

    PubMed  Article  Google Scholar 

  28. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8.

    PubMed  Article  Google Scholar 

  29. Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.

    PubMed  Article  Google Scholar 

  30. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75.

    PubMed  Article  Google Scholar 

  31. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125(9):1410–20.

    PubMed  Article  Google Scholar 

  32. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA ophthalmology. 2017;135(11):1170–6.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Burlina PM, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA ophthalmology. 2018;136(12):1359–66.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Hood DC, De Moraes CG. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1207–8.

    PubMed  Article  Google Scholar 

  35. Lim G, Cheng Y, Hsu W, Lee ML, editors. Integrated optic disc and cup segmentation with deep learning. 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI); 2015: IEEE.

  36. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA ophthalmology. 2018;136(7):803–10.

    PubMed  PubMed Central  Article  Google Scholar 

  37. TingDSW, WuW-C, TothC. Deep learning for retinopathy of prematurity screening. Br J Ophthalmol. 2018:bjophthalmol-2018-313290.

  38. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Opthalmology & Visual Science. 2016;57(13):5200.

    Article  Google Scholar 

  39. AbràmoffMD, LavinPT, BirchM, ShahN, FolkJC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine. 2018;1(1).

  40. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9.

    PubMed  Article  Google Scholar 

  41. Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying Normal versus age-related macular degeneration OCT images. Ophthalmology Retina. 2017;1(4):322–7.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 2018;256(2):259–65.

    CAS  PubMed  Article  Google Scholar 

  43. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122–31.e9.

    CAS  PubMed  Article  Google Scholar 

  44. Kihara Y, Heeren TF, Lee CS, Wu Y, Xiao S, Tzaridis S, et al. Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2. JAMA Netw Open. 2019;2(2):e188029–e.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, Schlegl T, Langs G, Gerendas BS, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in Neovascular age-related macular degeneration. Ophthalmology Retina. 2018;2(1):24–30.

    PubMed  Article  Google Scholar 

  46. LeeCS, TyringAJ, DeruyterNP, WuY, RokemA, LeeAY. Deep-Learning Based, Automated Segmentation Of Macular Edema In Optical Coherence Tomography. bioRxiv. 2017:135640.

  47. Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125(4):549–58.

    PubMed  Article  Google Scholar 

  48. • De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50. Findings from this study suggest that deep learning in making referral recommendations can reach or exceed that of human experts on a range of sight-threatening retinal diseases.

    PubMed  Article  CAS  Google Scholar 

  49. Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci. 2018;59(7):2861–8.

    PubMed  Article  Google Scholar 

  50. Xiao S, Rokem A, Lee CS, Wilson L, Pepple K, Sabesan R, et al. Fully automated quantification of retinal cones and anterior chamber cells using deep learning. Invest Ophthalmol Vis Sci. 2018;59(9):1222.

    Google Scholar 

  51. Wen JC, Lee CS, Keane PA, Xiao S, Wu Y, Rokem A, et al. Forecasting Future Humphrey Visual Fields Using Deep Learning. arXiv preprint arXiv:180404543. 2018.

  52. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158–64.

    PubMed  Article  Google Scholar 

  53. Ting DSW, Wong TY. Eyeing cardiovascular risk factors. Nature Biomedical Engineering. 2018;2(3):140–1.

    PubMed  Article  Google Scholar 

  54. TingDS, CheungCY, NguyenQ, SabanayagamC, LimG, LimZW, et al. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. npj Digital Medicine. 2019;2(1):24.

  55. Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA. 2016;316(22):2366–7.

    PubMed  Article  Google Scholar 

  56. Niemeijer M, Abramoff MD, van Ginneken B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal. 2006;10(6):888–98.

    PubMed  Article  Google Scholar 

  57. Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD, editors. Comparative study of retinal vessel segmentation methods on a new publicly available database. Medical imaging 2004: image processing; 2004: International Society for Optics and Photonics.

  58. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.

    PubMed  Article  Google Scholar 

  59. AbramoffMD, NiemeijerM, editors. The automatic detection of the optic disc location in retinal images using optic disc location regression. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; 2006: IEEE.

  60. Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.

    PubMed  Article  Google Scholar 

  61. Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7.

    PubMed  Article  Google Scholar 

  62. Abràmoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, Van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31(2):193–8.

    PubMed  Article  Google Scholar 

  63. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.

    CAS  PubMed  Article  Google Scholar 

  64. Group ETDRSR. Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology. 1991;98(5):823–33.

    Article  Google Scholar 

  65. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018;125(8):1264–72.

    PubMed  Article  Google Scholar 

  66. Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.

    PubMed  Article  Google Scholar 

  67. Peto T, Tadros C. Screening for diabetic retinopathy and diabetic macular edema in the United Kingdom. Current diabetes reports. 2012;12(4):338–45.

    PubMed  Article  Google Scholar 

  68. SayresR, TalyA, RahimyE, BlumerK, CozD, Hammel N, et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2018.

  69. Scotland GS, McNamee P, Philip S, Fleming AD, Goatman KA, Prescott GJ, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Scotland GS, McNamee P, Fleming AD, Goatman KA, Philip S, Prescott GJ, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9.

    CAS  PubMed  Article  Google Scholar 

  71. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91(11):1512–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Kapetanakis VV, Rudnicka AR, Liew G, Owen CG, Lee A, Louw V, et al. A study of whether automated diabetic retinopathy image assessment could replace manual grading steps in the English national screening Programme. J Med Screen. 2015;22(3):112–8.

    PubMed  Article  Google Scholar 

  73. Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51.

    PubMed  Article  Google Scholar 

  74. Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res Care. 2014;2(1):e000005.

    PubMed  PubMed Central  Article  Google Scholar 

  75. Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of diabetic retinopathy in urban India: the Chennai urban rural epidemiology study (CURES) eye study. I Invest Ophthalmol Vis Sci. 2005;46(7):2328–33.

    PubMed  Article  Google Scholar 

  76. Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, et al. Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One. 2015;10(9):e0138285e.

    Article  CAS  Google Scholar 

  77. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.

    PubMed  PubMed Central  Article  Google Scholar 

  78. SundararajanM, TalyA, YanQ, editors. Axiomatic attribution for deep networks. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org.

  79. Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, et al. Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program. arXiv preprint arXiv:181008290. 2018.

  80. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 2015;10(7):e0130140.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. International Council of Ophthalmology : Ophthalmologists Worldwide [updated 2019/04/25/06:38:29. Available from: http://www.icoph.org/ophthalmologists-worldwide.htmlfiles/266/ophthalmologists-worldwide.html.

  82. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:13126034. 2013.

  83. Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv:160501713. 2016.

  84. Keel S, Wu J, Lee PY, Scheetz J, He M. Visualizing deep learning models for the detection of referable diabetic retinopathy and Glaucoma. JAMA ophthalmology. 2019;137(3):288–92.

    PubMed  Article  Google Scholar 

  85. KeelS, LeePY, ScheetzJ, LiZ, KotowiczMA, MacIsaacRJ, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep. 2018;8(1).

  86. Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665.

    PubMed  PubMed Central  Article  Google Scholar 

  87. Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. PloS one. 2015;10(10):e0139148.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117(6):1147–54.

    PubMed  Article  Google Scholar 

  89. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health. 2019;1(1):e35–44.

    Article  PubMed  Google Scholar 

  90. Naylor CD. On the prospects for a (deep) learning health care system. JAMA. 2018;320(11):1099–100.

    PubMed  Article  Google Scholar 

  91. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8(4):303–20.

    CAS  PubMed  Article  Google Scholar 

  92. Miller RA, Pople HE Jr, Myers JD. Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–76.

    CAS  PubMed  Article  Google Scholar 

  93. Yu VL, Fagan LM, Wraith SM, Clancey WJ, Scott AC, Hannigan J, et al. Antimicrobial selection by a computer: ablinded evaluation by infectious diseases experts. JAMA. 1979;242(12):1279–82.

    CAS  PubMed  Article  Google Scholar 

  94. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial IntelligenceClinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200.

    PubMed  Article  Google Scholar 

  95. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N, editors. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015: ACM.

  96. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, editors. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision; 2017.

  97. Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA ophthalmology. 2019;137(3):258–64.

    PubMed  Article  PubMed Central  Google Scholar 

  98. Shrikumar A, Greenside P, Kundaje A, editors. Learning important features through propagating activation differences. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org.

  99. Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine. Science. 2019;363(6429):810–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Sullivan HR, Schweikart SJ. Are current tort liability doctrines adequate for addressing injury caused by AI? AMA J Ethics. 2019;21(2):160–6.

    Article  Google Scholar 

  101. Goh JKH, Cheung CY, Sim SS, Tan PC, Tan GSW, Wong TY. Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):282–94.

    PubMed  PubMed Central  Article  Google Scholar 

  102. Liew CJ, Krishnaswamy P, Cheng L, Tan CH, Poh A, Lim T. Artificial intelligence and radiology in Singapore: championing a new age of augmented imaging for unsurpassed patient care. Ann Acad Med Singap. 2019;48:16–24.

    PubMed  Google Scholar 

  103. LimG, LeeML, HsuW. Intermediate goals in deep learning for retinal image analysis. ACCV Workshop on AI for Retinal Image Analysis, ACCV2018, 2019.

  104. LimG, LimZW, DejiangX, TingDSW, WongTY, LeeML, et al.Feature isolation for hypothesis testing in retinal imaging: an ischemic stroke prediction case study. Innovative Applications of Artificial Intelligence 2019.

Download references

Funding

Funding from Research Grants Council-General Research Fund, Hong Kong (Ref: 14102418); National Medical Research Council Health Service Research Grant, Large Collaborative Grant, Ministry of Health, Singapore; the SingHealth Foundation; and the Tanoto Foundation.

Author information

Authors and Affiliations

Authors

Contributions

VB, GL, and DT contributed to the initial drafting of the manuscript. VB, GL, TR, GT, CC, SS, MH, AT, ML, WH, and DT all contributed to the critical review and final approval for this manuscript.

Corresponding author

Correspondence to Daniel Shu Wei Ting.

Ethics declarations

Conflict of Interest

Dr. Gilbert Lim, Prof. Mong Li Lee, Prof. Wynne Hsu, and Dr. Daniel S.W. Ting are the co-inventors of the deep learning system for detection of retinal diseases (patent on Automated Retinal Image Analysis Software for Referable Diabetic Retinopathy, Glaucoma Suspect and Age-Related Macular Degeneration 10201706186V [Singapore]). Dr. Ming-guang He is a co-inventor of another deep learning system for detection of retinal diseases (patent on managing color fundus images using deep learning models [ZL201510758675.5]). Valentina Bellemo, Dr. Tyler Hyungtaek Rim, Dr. Gavin S.W. Tan, Dr. Carol Y. Cheung, Dr. SriniVas Sadda, Prof. Ming-guang He, and Prof. Adnan Tufail declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellemo, V., Lim, G., Rim, T.H. et al. Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application. Curr Diab Rep 19, 72 (2019). https://doi.org/10.1007/s11892-019-1189-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1189-3

Keywords

  • Artificial intelligence
  • Deep learning
  • Diabetic retinopathy screening
  • Retinal images
  • Tele-medicine
  • Survey