Skip to main content

Diabetes, Depression, and Cognition: a Recursive Cycle of Cognitive Dysfunction and Glycemic Dysregulation


Purpose of Review

The study aims to examine the effects of diabetes and depression on executive functioning (EF) and to review the effects of EF deficits on diabetes management.

Recent Findings

Both type 2 diabetes and depression influence EF, and in turn, EF has an impact on diabetes management.


Individuals with both comorbidities (i.e., diabetes and depression) experience greater deficits in EF than individuals with just one of the morbidities (i.e., depression or diabetes). The disruption in EF results in poor diabetes management and poor emotion regulation which ultimately increases the probability of a recursive cycle of depression and hyperglycemia. This recursive cycle can ultimately lead to diabetes-related complications.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Gupta D, Radhakrishnan M, Kurhe Y. Insulin reverses anxiety-like behavior evoked by streptozotocin-induced diabetes in mice. Metab Brain Dis 2014 04/25.

  2. 2.

    Tunceli K, Bradley CJ, Nerenz D, Williams LK, Pladevall M, Elston LJ. The impact of diabetes on employment and work productivity. Diabetes Care. 2005;28(11):2662–7.

    Article  Google Scholar 

  3. 3.

    Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.

    Article  Google Scholar 

  4. 4.

    Ho N, Sommers MS, Lucki I. Effects of diabetes on hippocampal neurogenesis: Links to cognition and depression. Neurosci Biobehav Rev. 2013;37(8):1346–62.

    CAS  Article  Google Scholar 

  5. 5.

    Gregg EW, Brown A. Cognitive and physical disabilities and aging-related complications of diabetes. Clinical Diabetes. 2003.

  6. 6.

    Rubin RR, Wadden TA, Bahnson JL, Blackburn GL, Brancati FL, Bray GA, et al. Impact of intensive lifestyle intervention on depression and health-related quality of life in type 2 diabetes: the Look AHEAD Trial. Diabetes Care. 2014; [6]

  7. 7.

    Gregg EW, Beckles GL, Williamson DF, Leveille SG. Langlois JA. Narayan KM. Diabetes and physical disability among older U.S. adults. Diabetes Care: Engelgau MM; 2000. [7]

    Google Scholar 

  8. 8.

    • Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord, 2012, s8-s21. This article reviews the epidemiology of co-morbid depression and concludes that depression is quite prevalent among individuals with Type 2 diabetes but that more longitudinal studies are needed to determine the nature of the relationship and before any conclusions about causality can be made.

  9. 9.

    Atlantis E. Excess burden of type 1 and type 2 diabetes due to psychopathology. J Affect Disord. 2012;142:S36–41.

    Article  Google Scholar 

  10. 10.

    • Lloyd CE, Roy T, Nouwen A, Chauhan AM. Epidemiology of depression in diabetes: international and cross-cultural issues. J Affect Disord. 2012;142:S22–9. This paper considers the risk factors for individuals with diabetes developing depression, from a cross-cultural perspective. There is also a discussion about the consequences of depression for individuals with diabetes.

    Article  Google Scholar 

  11. 11.

    Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the world health surveys. Lancet. 2007;370(9590):851–8.

    Article  Google Scholar 

  12. 12.

    Silva N, Atlantis E, Ismail K. A review of the association between depression and insulin resistance: pitfalls of secondary analyses or a promising new approach to prevention of type 2 diabetes? Curr Psychiatry Rep. 2012;14:8–14.

    Article  Google Scholar 

  13. 13.

    Watari K, Elderkin-Thompson V, Ajilore O, Haroon E, Darwin C, Pham D, et al. Neuroanatomical correlates of executive functioning in depressed adults with type 2 diabetes. J Clin Exp Neuropsychol 2008;30(4):389–397.

    Article  Google Scholar 

  14. 14.

    Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. Am Psychol. 2016;71(7):563.

    Article  Google Scholar 

  15. 15.

    Houben K, Dassen FC, Jansen A. Taking control: working memory training in overweight individuals increases self-regulation of food intake. Appetite. 2016;105:567–74.

    Article  Google Scholar 

  16. 16.

    Tabák AG, Akbaraly TN, Batty GD, Kivimäki M. Depression and type 2 diabetes: a causal association? Lancet Diabetes Endocrinol. 2014;2(3):236–45.

    Article  Google Scholar 

  17. 17.

    Ruis C, Donk M, Biessels GJ, Kapplle LJ, Gortter KJ, Rutten G. Cognition in the early stage of type 2 diabetes. Diabetes Care. 2009;32:1261–5.

    Article  Google Scholar 

  18. 18.

    Becker S, Wojtowicz JM. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci (Regul Ed ). 2007;11(2):70–6.

    Article  Google Scholar 

  19. 19.

    Cukierman-Yaffe T. Diabetes, dysglycemia and cognitive dysfunction. Diabetes Metab Res Rev. 2014;30(5):341–5.

    Article  Google Scholar 

  20. 20.

    •• Cukierman-Yaffe T, Gerstein HC, Williamson JD, Lazar RM, Lovato L, Miller ME, et al. Relationship Between Baseline Glycemic Control and Cognitive Function in Individuals With Type 2 Diabetes and Other Cardiovascular Risk Factors: The Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) trial. Diabetes Care. 2009;32(2):221–6. Interesting article about the relation between glycemic control and cognition.

    Article  Google Scholar 

  21. 21.

    Munshi MN, Hayes M, Iwata I, Lee Y, Weinger K. Which aspects of executive dysfunction influence ability to manage diabetes in older adults? Diabet Med. 2012;29(9):1171–7.

    CAS  Article  Google Scholar 

  22. 22.

    • Hofmann W, Schmeichel BJ, Baddeley AD. Executive functions and self-regulation. Trends Cogn Sci. 2012;16(3):174–80. This paper describes the way in which executive function is extremely important for self-regulation

    Article  Google Scholar 

  23. 23.

    • Feil D, Zhu C, Sultzer D. The relationship between cognitive impairment and diabetes self-management in a population-based community sample of older adults with Type 2 diabetes. J Behav Med. 2012;35(2):190–9. Describes the effects of cognitive impairment on diabetes self-care.

    Article  Google Scholar 

  24. 24.

    • Miyake A, Friedman NP. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cognit Psychol. 2000;41(1):49. This is a classic paper describing a very important mode of Executive Function.

    CAS  Article  Google Scholar 

  25. 25.

    Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143(10):1033–81.

    Article  Google Scholar 

  26. 26.

    Lee JH, Choi Y, Jun C, Hong YS, Cho HB, Kim JE, et al. Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab. 2014;29(2):112–21.

    Article  Google Scholar 

  27. 27.

    Lyoo I, Yoon S, Jacobson AM, et al. Prefrontal cortical deficits in type 1 diabetes mellitus: brain correlates of comorbid depression. Arch Gen Psychiatry. 2012;69(12):1267–76.

    Article  Google Scholar 

  28. 28.

    Baker LD, Cross DJ, Minoshima S, Belongia D, Watson G, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68(1):51–7.

    Article  Google Scholar 

  29. 29.

    Cohen N, Henik A, Moyal N. Executive control attenuates emotional effects—For high reappraisers only? Emotion 2012 10;12(5):970–979.

    Article  Google Scholar 

  30. 30.

    Roriz-Filho S,J, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta. 2009;1792(5):432–43.

    CAS  Article  Google Scholar 

  31. 31.

    Huang R, Jia B, Xie L, Ma S, Yin J, Sun Z, et al. Spatial working memory impairment in primary onset middle-age type 2 diabetes mellitus: an ethology and BOLD-fMRI study. J Magn Reson Imaging. 2016;43(1):75–87.

    Article  Google Scholar 

  32. 32.

    He X, Wang Z, Zhu Y, Wang N, Hu X, Zhang D, et al. Hyperactivation of working memory-related brain circuits in newly diagnosed middle-aged type 2 diabetics. Acta Diabetol. 2014;01(01):1–10.

    Google Scholar 

  33. 33.

    Munshi M, Capelson R, Grande L, Lin S, Hayes M, Milberg W, et al. Cognitive Dysfunction Is Associated With Poor Diabetes Control in Older Adults. Diabetes Care. 2006;29(8):1794–9.

    Article  Google Scholar 

  34. 34.

    Grande LJ, Rudolph JL, Milberg WP, Barber CE, McGlinchey RE. Detecting cognitive impairment in individuals at risk for cardiovascular disease: the “clock-in-the-box” screening test. Int J Geriatr Psychiatry. 2011;26(9):969–75.

    Article  Google Scholar 

  35. 35.

    Royall DR, Cordes JA, Polk M. CLOX: an executive clock drawing task. J Neurol Neurosurg Psychiatry. 1998 May;64(5):588–94.

    CAS  Article  Google Scholar 

  36. 36.

    Nazaribadie M, Amini M, Ahmadpanah M, Asgari K, Jamlipaghale S, Nazaribadie S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J Diabetes Metab Disord. 2014;13(1):27–33.

    Article  Google Scholar 

  37. 37.

    Dohle S, Diel K, Hofmann W. Executive functions and the self-regulation of eating behavior: a review. Appetite. 2017;

  38. 38.

    Allom V, Mullan B. Individual differences in executive function predict distinct eating behaviours. Appetite. 2014;80:123–30.

    Article  Google Scholar 

  39. 39.

    Whitelock V, Nouwen A, Houben K, van den Akker O, Rosenthal M, Higgs S. Does working memory training improve dietary self-care in type 2 diabetes mellitus? Diabetes Res Clin Pract: Results of a double blind randomised controlled trial; 2018.

    Google Scholar 

  40. 40.

    • Spitznagel MB, Garcia S, Miller LA, Strain G, Devlin M, Wing R, et al. Cognitive function predictsweight loss after bariatric surgery. Surg Obes Relat Dis. 2013;9(3):453–9. Interesting study about the relation between executive function and dietary behavior.

    Article  Google Scholar 

  41. 41.

    Shimamura AP. Toward a cognitive neuroscience of metacognition. Conscious Cogn. 2000;9:313–23.

    CAS  Article  Google Scholar 

  42. 42.

    Kelly A, Calamia M, Koval A, Terrera GM, Piccinin AM, Clouston S, et al. Independent and interactive impacts of hypertension and diabetes mellitus on verbal memory: A coordinated analysis of longitudinal data from England, Sweden, and the United States. Psychol Aging. 2016;31(3):262–73.

    Article  Google Scholar 

  43. 43.

    van Bussel FC, Backes WH, Hofman PA, van Boxtel MP, Schram MT, Stehouwer CD, et al. Altered hippocampal white matter connectivity in type 2 diabetes mellitus and memory decrements. J Neuroendocrinol. 2016;

  44. 44.

    Ajilore O, Lamar M, Medina J, Watari K, Elderkin-Thompson V, Kumar A. Disassociation of verbal learning and hippocampal volume in type 2 diabetes and major depression. Int J Geriatr Psychiatry. 2015;30(4):393–9.

    CAS  Article  Google Scholar 

  45. 45.

    De Felice FG, Benedict C. A key role of insulin receptors in memory. Diabetes. 2015;64(11):3653–5.

    Article  Google Scholar 

  46. 46.

    Pandey SP, Singh HK, Prasad S. Alterations in hippocampal oxidative stress, expression of AMPA receptor GluR2 subunit and associated spatial memory loss by Bacopa monnieri extract (CDRI-08) in Streptozotocin-induced diabetes mellitus type 2 mice. PLoS One. 2015;7

  47. 47.

    Vieira ER, Mendy A, Prado CM, Gasana J, Albatineh AN. Falls, physical limitations, confusion and memory problems in people with type II diabetes, undiagnosed diabetes and prediabetes, and the influence of vitamins a, D and E. J Diabetes Complicat. 2015;29:1159–64.

    Article  Google Scholar 

  48. 48.

    Lamport DJ, Lawton CL, Mansfield MW, Moulin CAJ, Dye L. Type 2 diabetes and impaired glucose tolerance are associated with word memory source monitoring recollection deficits but not simple recognition familiarity deficits following water, low glycaemic load, and high glycaemic load breakfasts. Physiol Behav. 2014;124:54–60.

    CAS  Article  Google Scholar 

  49. 49.

    Kitamura T, Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation. Molecular Brain. 2014;7:1–8.

    Article  Google Scholar 

  50. 50.

    McCabe DP, Roediger HLI II, McDaniel MA, Balota DA, Hambrick DZ. The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology. 2010;24(2):222–43.

    Article  Google Scholar 

  51. 51.

    Kaschel R, Kazén M, Kuhl J. State orientation and memory load impair prospective memory performance in older compared to younger persons. Aging Neuropsychol Cognit. 2017;24(4):453–69.

    Article  Google Scholar 

  52. 52.

    Woods SP, Dawson MS, Weber E, Gibson S, Grant I, Atkinson JH, et al. Timing is everything: antiretroviral nonadherence is associated with impairment in time-based prospective memory. J Int Neuropsychol Soc. 2009;15(1):42–52.

    CAS  Article  Google Scholar 

  53. 53.

    • Vedhara K, Wadsworth E, Norman P, Searle A, Mitchell J, Macrae N, et al. Habitual prospective memory in elderly patients with Type 2 diabetes: implications for medication adherence. Psychol Health Med. 2004;9(1):17–27. Very interesting study focusing on the effects of diabetes on prospective memory.

    Article  Google Scholar 

  54. 54.

    Bottiroli S, Vecchi T, Campanella F, Varetta A, Gallotti MC, Perego E, et al. Executive functioning in older adult outpatients with type 2 diabetes mellitus: a preliminary study. Clin Gerontol. 2014;37(2):91–107.

    Article  Google Scholar 

  55. 55.

    Smith MA, Else JE, Wesnes KA, Riby LM, Paul L, Foster JK, et al. Functional living in older adults with type 2 diabetes: Executive functioning, dual task performance, and the impact on postural stability and motor control. J Aging Health. 2014;26(5):841–59.

    Article  Google Scholar 

  56. 56.

    Lavigne JE, Phelps CE, Mushlin A, Lednar WM. Reductions in individual work productivity associated with type 2 diabetes mellitus. Pharmacoeconomics. 2003;21(15):1123–34.

    Article  Google Scholar 

  57. 57.

    Salehinejad MA, Ghanavai E, Rostami R, Nejati V. Cognitive control dysfunction in emotion dysregulation and psychopathology of major depression (MD): evidence from transcranial brain stimulation of the dorsolateral prefrontal cortex (DLPFC). J Affect Disord. 2017;210:241–8.

    Article  Google Scholar 

  58. 58.

    Joormann J, Tanovic E. Cognitive vulnerability to depression: examining cognitive control and emotion regulation. Curr Opin Psychol. 2015;4:86–92.

    Article  Google Scholar 

  59. 59.

    • Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139(1):81. Provides an important review of the neuropsychological effects of depression.

    Article  Google Scholar 

  60. 60.

    De Lissnyder E, Koster EH, Everaert J, Schacht R, Van den Abeele D, De Raedt R. Internal cognitive control in clinical depression: general but no emotion-specific impairments. Psychiatry Res. 2012;199(2):124–30.

    Article  Google Scholar 

  61. 61.

    Dalby RB, Frandsen J, Chakravarty MM, Ahdidan J, Sørensen L, Rosenberg R, et al. Correlations between Stroop task performance and white matter lesion measures in late-onset major depression. Psychiatry Res Neuroimaging. 2012;202(2):142–9.

    Article  Google Scholar 

  62. 62.

    Epp AM, Dobson KS, Dozois DJA, Frewen PA. A systematic meta-analysis of the Stroop task in depression. Clin Psychol Rev. 2012;32(4):316–28.

    Article  Google Scholar 

  63. 63.

    • Koster EH, De Lissnyder E, Derakshan N, De Raedt R. Understanding depressive rumination from a cognitive science perspective: the impaired disengagement hypothesis. Clin Psychol Rev. 2011;31(1):138–45. Provides a model of rumination from a cognitive perspective.

    Article  Google Scholar 

  64. 64.

    Grahek I, Everaert J, Krebs R, Koster EHW. Preprint: Cognitive Control in Depression: Toward Clinical Models Informed by Cognitive Neuroscience 2018. doi:

  65. 65.

    Genet JJ, Malooly AM, Siemer M. Flexibility is not always adaptive: affective flexibility and inflexibility predict rumination use in everyday life. Cognit Emot. 2013;27(4):685–69571.

    Article  Google Scholar 

  66. 66.

    Joormann J, Gotlib IH. Updating the contents of working memory in depression: interference from irrelevant negative material. J Abnorm Psychol. 2008;117(1):182–92.

    Article  Google Scholar 

  67. 67.

    Paxton JL, Barch DM, Racine CA, Braver TS. Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb Cortex. 2007;18(5):1010–28.

    Article  Google Scholar 

  68. 68.

    • Belleau E, Taubitz LE, Larson CL. Imbalance of default mode and regulatory networks during externally focused processing in depression. Soc Cogn Affect Neurosci. 2015;10(5):744–51. Describes the physiological basis for rumination among individuals with depression.

    Article  Google Scholar 

  69. 69.

    Lee JH, Choi Y, Jun C, Hong YS, Cho HB, Kim JE, et al. Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab. 2014;29(2):112–21.

    Article  Google Scholar 

  70. 70.

    Le DS, Pannacciulli N, Chen K, Salbe AD, Hill JO, Wing RR, et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am J Clin Nutr. 2007;86(3):573–9.

    CAS  Article  Google Scholar 

  71. 71.

    Gyurak A, Goodkind MS, Kramer JH, Miller BL, Levenson RW. Executive functions and the down-regulation and up-regulation of emotion. Cognit Emot. 2012;26(1):103–18.

    Article  Google Scholar 

  72. 72.

    Joormann J, Tanovic E. Cognitive vulnerability to depression: examining cognitive control and emotion regulation. Curr Opin Psychol 2015;4:86–92. 2016;190:744–753.

    Article  Google Scholar 

  73. 73.

    Hubbard NA, Hutchison JL, Turner M, Montroy J, Bowles RP, Rypma B. Depressive thoughts limit working memory capacity in dysphoria. Cognit Emot. 2016;30(2):193–209.

    Article  Google Scholar 

  74. 74.

    Friedman NP, Miyake A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017 January 2017;86:186–204.

    Article  Google Scholar 

  75. 75.

    Mansur RB, Brietzke E, McIntyre RS. Review: is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 2015;52:89–104.

    Article  Google Scholar 

  76. 76.

    van Duinkerken E, Snoek FJ. Interaction between Diabetes and Depression: Consequences for Cognition and the Brain. Curr Med Lit: Psychiatry. 2012;23(3):69–78.

    Google Scholar 

  77. 77.

    Park M, Katon WJ, Wolf FM. Depression and risk of mortality in individuals with diabetes: a meta-analysis and systematic review. Gen Hosp Psychiatry. 2013;35(3):217–25.

    Article  Google Scholar 

  78. 78.

    Deschênes SS, Burns RJ, Schmitz N. Associations between diabetes, major depressive disorder and generalized anxiety disorder comorbidity, and disability: findings from the 2012 Canadian community health survey—mental health (CCHS-MH). J Psychosom Res. 2015;78(2):137–42.

    Article  Google Scholar 

  79. 79.

    • Sullivan MD, Katon WJ, Lovato LC, et al. Association of depression with accelerated cognitive decline among patients with type 2 diabetes in the accord-mind trial. JAMA Psychiatry. 2013;1:70. Study describes the effects of co-morbid depression and diabetes on cognition.

    Google Scholar 

  80. 80.

    Lustman PJ, Clouse RE. Depression in diabetic patients: The relationship between mood and glycemic control. J Diabetes Complicat. 2005;19(2):113–22. (10):1041–1047

    PubMed  Google Scholar 

  81. 81.

    Janocha A, Bolanowski M, Pilecki W, Małyszczak K, Salomon E, Woźniak W, et al. Cognitive disorders in type 2 diabetic patients with recognized depression. Neuro Endocrinol Lett. 2010;31(3):399–405.

    PubMed  Google Scholar 

  82. 82.

    Pompili M, Lester D, Innamorati M, De Pisa E, Amore M, Ferrara C, et al. Quality of life and suicide risk in patients with diabetes mellitus. Psychosomatics. 2009;50(1):16–23.98.

    Article  Google Scholar 

  83. 83.

    Russo J, Katon W, Lin E, Von Korff M, Bush T, Simon G, et al. Neuroticism and extraversion as predictors of health outcomes in depressed primary care patients. Psychosomatics. 1997;38(4):339–48.

    CAS  Article  Google Scholar 

  84. 84.

    Lahey BB. Public health significance of neuroticism. Am Psychol. 2009;64(4):241–56.

    Article  Google Scholar 

  85. 85.

    Cohen N, Mor N, Henik A. Linking executive control and emotional response: a training procedure to reduce rumination. Clin Psychol Sci. 2015;3(1):15–25.

    Article  Google Scholar 

  86. 86.

    Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology. 1999;53(9):1937–42.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sheila Black.

Ethics declarations

Conflict of Interest

Sheila Black, Kyle Kraemer, Avani Shah, Gaynell Simpson, Forrest Scogin, and Annie Smith declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychosocial Aspects

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Black, S., Kraemer, K., Shah, A. et al. Diabetes, Depression, and Cognition: a Recursive Cycle of Cognitive Dysfunction and Glycemic Dysregulation. Curr Diab Rep 18, 118 (2018).

Download citation


  • Diabetes
  • Memory
  • Executive processing
  • Depression