Skip to main content

Advertisement

Log in

Diabetes and HIV

  • Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review seeks to address the epidemiology and pathophysiological basis of the interaction between HIV infection and diabetes and the implication for treatment. Its importance stems from the current context of the growing burden of both conditions and the possible mechanisms of interactions that may exist but not yet sufficiently examined.

Recent Findings

HIV infection is associated with increased risk of insulin resistance, and ART is associated with metabolic derangement and the occurrence of type 2 diabetes. The increasing survival among people with HIV infection in developing countries is paralleled by a growing burden of chronic non-communicable diseases (NCDs) especially cardiovascular diseases and diabetes mellitus. The prevalence of diabetes mellitus is higher in HIV-positive persons compared to the general population, and especially those with associated hepatitis C virus (HCV) co-infection. Antiretroviral therapy (ART) during chronic HIV infection is the most incriminated risk factor for the development of diabetes mellitus through diverse mechanisms depending on the ART leading to insulin resistance and increased inflammatory status.

Summary

A staggering 629 million of people 20–79 years are projected to have diabetes by 2045 while the world will soon enter the fourth decade of the HIV infection. Classical risk factors for diabetes such as physical inactivity and unhealthy diet may not solely explain the current trends, suggesting the role of novel risk factors including infections/inflammation. HIV and its treatment have been identified as potential contributors. Co-infections frequently observed during HIV infection also significantly influence both the epidemiological and pathophysiological of the link between HIV and diabetes. Although the relative contribution of each risk factor has not yet been quantified, several lines of evidence suggest that ART is a major contributor to hyperglycemia in HIV infection. ARTs have also led to an increase in metabolic dysfunction, including insulin resistance syndromes, dyslipidemia, and lipodystrophy. The association between ARTs and the risk of developing diabetes therefore calls for a careful choice of medication and evaluation of the risk of developing diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeFronzo RA, Ferrannini E, Alberti KGMM, Zimmet P. International textbook of diabetes mellitus, 4th ed. Chichester, West Sussex ; Hoboken, NJ: John Wiley & Sons Inc; 2015.

  2. International Diabetes Federation. IDF diabetes atlas. 8th edn. Brussels, Belgium: International Diabetes Federation; 2017.

  3. Joint United Nations Programme on HIV/AIDS (UNAIDS). 2017. http://www.unaids.org/en/resources/documents/2017/2017_data_book.

  4. •• Atun R, Davies JI, Gale EAM, Bärnighausen T, Beran D, Kengne AP, et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. Lancet Diabetes Endocrinol. 2017;5(8):622–67. This study showcases broadly the epidemiological profile of diabetes in sub-Saharan Africa and the contribution of HIV and ART towards the surge of diabetes prevalence in SSA.

    Article  Google Scholar 

  5. • Pepin ME, Padgett LE, McDowell RE, Burg AR, Brahma MK, Holleman C, et al. Antiretroviral therapy potentiates high-fat diet induced obesity and glucose intolerance. Mol Metab. 2018;12:48–61. This study proposes a possible mechanism for the development of obesity and glucose intolerance (major risk factor for diabetes) during Protease Inhibitor-based HIV regimen.

    Article  CAS  Google Scholar 

  6. White DL, Ratziu V, El-Serag HB. Hepatitis C infection and risk of diabetes: a systematic review and meta-analysis. J Hepatol. 2008;49(5):831–44.

    Article  Google Scholar 

  7. Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis. 2009;9(12):737–46.

    Article  Google Scholar 

  8. El-Sadr WM, Mullin CM, Carr A, Gibert C, Rappoport C, Visnegarwala F, et al. Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Med. 2005;6(2):114–21.

    Article  CAS  Google Scholar 

  9. Kilby JM, Tabereaux PB. Severe hyperglycemia in an HIV clinic: preexisting versus drug-associated diabetes mellitus. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(1):46–50.

    Article  CAS  Google Scholar 

  10. Visnegarwala F, Krause KL, Musher DM. Severe diabetes associated with protease inhibitor therapy. Ann Intern Med. 1997;127(10):947.

    Article  CAS  Google Scholar 

  11. Eastone JA, Decker CF. New-onset diabetes mellitus associated with use of protease inhibitor. Ann Intern Med. 1997;127(10):948.

    Article  CAS  Google Scholar 

  12. Dubé MP, Johnson DL, Currier JS, Leedom JM. Protease inhibitor-associated hyperglycaemia. Lancet Lond Engl. 1997;350(9079):713–4.

    Article  Google Scholar 

  13. Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.

    Article  Google Scholar 

  14. Petoumenos K, Worm SW, Fontas E, Weber R, De Wit S, Bruyand M, et al. Predicting the short-term risk of diabetes in HIV-positive patients: the data collection on adverse events of anti-HIV drugs (D:a:D) study. J Int AIDS Soc. 2012;15(2):17426.

    Article  Google Scholar 

  15. Ledergerber B, Furrer H, Rickenbach M, Lehmann R, Elzi L, Hirschel B, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV cohort study. Clin Infect Dis. 2007;45(1):111–9.

    Article  Google Scholar 

  16. Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9):e44575.

    Article  CAS  Google Scholar 

  17. Samad F, Harris M, Puskas CM, Ye M, Chia J, Chacko S, et al. Incidence of diabetes mellitus and factors associated with its development in HIV-positive patients over the age of 50. BMJ Open Diabetes Res Care. 2017;5(1):e000457.

    Article  Google Scholar 

  18. • Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J. Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care. 2017;5(1):e000304. This study demonstrates that the risk of developing diabetes in an HIV-infected population is higher than that of the general population.

    Article  Google Scholar 

  19. Ghislain M, Bastard J-P, Meyer L, Capeau J, Fellahi S, Gérard L, et al. Late antiretroviral therapy (ART) initiation is associated with long-term persistence of systemic inflammation and metabolic abnormalities. PLoS One. 2015;10(12):e0144317.

    Article  Google Scholar 

  20. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–60.

    Article  Google Scholar 

  21. Larsson A, Larsson SE. The effects of ethylene-1-hydroxy-1, 1-diphosphonate on cellular transformation and organic matrix of the epiphyseal growth plate of the rat--a light microscopic and ultrastructural study. Acta Pathol Microbiol Scand A. 1978;86(3):211–23.

    CAS  PubMed  Google Scholar 

  22. Samaras K. The burden of diabetes and hyperlipidemia in treated HIV infection and approaches for cardiometabolic care. Curr HIV/AIDS Rep. 2012;9(3):206–17.

    Article  Google Scholar 

  23. Woerle HJ, Mariuz PR, Meyer C, Reichman RC, Popa EM, Dostou JM, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes. 2003;52(4):918–25.

    Article  CAS  Google Scholar 

  24. Kalra S, Kalra B, Agrawal N, Unnikrishnan A. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011;3:2.

    Article  Google Scholar 

  25. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:a:D) study. Diabetes Care. 2008;31(6):1224–9.

    Article  Google Scholar 

  26. Erlandson KM, Kitch D, Tierney C, Sax PE, Daar ES, Melbourne KM, et al. Impact of randomized antiretroviral therapy initiation on glucose metabolism. AIDS Lond Engl. 2014;28(10):1451–61.

    Article  CAS  Google Scholar 

  27. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS Lond Engl. 1998;12(7):F51–8.

    Article  CAS  Google Scholar 

  28. Vigouroux C, Maachi M, Nguyên T-H, Coussieu C, Gharakhanian S, Funahashi T, et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS Lond Engl. 2003;17(10):1503–11.

    Article  CAS  Google Scholar 

  29. Samaras K. Prevalence and pathogenesis of diabetes mellitus in HIV-1 infection treated with combined antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;50(5):499–505.

    Article  Google Scholar 

  30. Carr A. HIV protease inhibitor-related lipodystrophy syndrome. Clin Infect Dis. 2000;30(Suppl 2):S135–42.

    Article  CAS  Google Scholar 

  31. Zannou DM, Denoeud L, Lacombe K, Amoussou-Guenou D, Bashi J, Akakpo J, et al. Incidence of lipodystrophy and metabolic disorders in patients starting non-nucleoside reverse transcriptase inhibitors in Benin. Antivir Ther. 2009;14(3):371–80.

    CAS  PubMed  Google Scholar 

  32. Dagogo-Jack S. HIV therapy and diabetes risk. Diabetes Care. 2008;31(6):1267–8.

    Article  Google Scholar 

  33. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med. 2000;133(8):592–9.

    Article  CAS  Google Scholar 

  34. Williams RH, Larsen PR, éditeurs. Williams textbook of endocrinology. 10th ed. Philadelphia, Pa: Saunders; 2003. 1927 p.

  35. Abrass CK. Fc-receptor-mediated phagocytosis: abnormalities associated with diabetes mellitus. Clin Immunol Immunopathol. 1991;58(1):1–17.

    Article  CAS  Google Scholar 

  36. Nichols GP. Diabetes among young tuberculous patients; a review of the association of the two diseases. Am Rev Tuberc. 1957;76(6):1016–30.

    CAS  PubMed  Google Scholar 

  37. Zack MB, Fulkerson LL, Stein E. Glucose intolerance in pulmonary tuberculosis. Am Rev Respir Dis. 1973;108(5):1164–9.

    CAS  PubMed  Google Scholar 

  38. Oluboyo PO, Erasmus RT. The significance of glucose intolerance in pulmonary tuberculosis. Tubercle. 1990;71(2):135–8.

    Article  CAS  Google Scholar 

  39. Başoğlu OK, Bacakoğlu F, Cok G, Sayiner A, Ateş M. The oral glucose tolerance test in patients with respiratory infections. Monaldi Arch Chest Dis. 1999;54(4):307–10.

    PubMed  Google Scholar 

  40. Takarabe D, Rokukawa Y, Takahashi Y, Goto A, Takaichi M, Okamoto M, et al. Autoimmune diabetes in HIV-infected patients on highly active antiretroviral therapy. J Clin Endocrinol Metab. 2010;95(8):4056–60.

    Article  CAS  Google Scholar 

  41. Smith JC, Evans LM, Wilkinson I, Goodfellow J, Cockcroft JR, Scanlon MF, et al. Effects of GH replacement on endothelial function and large-artery stiffness in GH-deficient adults: a randomized, double-blind, placebo-controlled study. Clin Endocrinol (Oxf). 56(4):493–501.

    Article  CAS  Google Scholar 

  42. Lamanna C, Monami M, Marchionni N, Mannucci E. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2011;13(3):221–8.

    Article  CAS  Google Scholar 

  43. Dolutegravir | FDA Label - Tablet (film coated) | AIDSinfo [Internet]. [cited 2018 Jul 31]. Available from: https://aidsinfo.nih.gov/drugs/509/dolutegravir/167/professional.

  44. Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.

    Article  CAS  Google Scholar 

  45. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2008;10(12):1221–38.

    CAS  PubMed  Google Scholar 

  46. Deeg MA, Buse JB, Goldberg RB, Kendall DM, Zagar AJ, Jacober SJ, et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2007;30(10):2458–64.

    Article  CAS  Google Scholar 

  47. Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care. 2011;34(4):916–22.

    Article  CAS  Google Scholar 

  48. Schernthaner G, Currie CJ, Schernthaner G-H. Do we still need pioglitazone for the treatment of type 2 diabetes? A risk-benefit critique in 2013. Diabetes Care. 2013;36(Suppl 2):S155–61.

    Article  CAS  Google Scholar 

  49. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet Lond Engl. 2006;368(9548):1696–705.

    Article  CAS  Google Scholar 

  50. Goodwin SR, Reeds DN, Royal M, Struthers H, Laciny E, Yarasheski KE. Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab. 2013;98(2):743–51.

    Article  CAS  Google Scholar 

  51. ONGLYZA® (saxagliptin) | Adult Type 2 Diabetes Medication [Internet]. [cited 2018 Jul 31]. Available from: https://www.onglyza.com/.

  52. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Stein P, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)--a randomized placebo-controlled trial. Am Heart J. 2013;166(2):217–223.e11.

    Article  CAS  Google Scholar 

  53. INVOKANA® (canagliflozin) Dosing & Prescribing Information [Internet]. [cited 2018 Jul 31]. Available from: https://www.invokanahcp.com/dosing.

  54. Murphy CS, McKay GA. HIV and diabetes. Diabetes Manag. 2013;3(6):495–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Sobngwi.

Ethics declarations

Conflict of Interest

Emile Camille Noubissi, Jean-Claude Katte, and Eugene Sobngwi declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Other Forms of Diabetes and Its Complications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noubissi, E.C., Katte, JC. & Sobngwi, E. Diabetes and HIV. Curr Diab Rep 18, 125 (2018). https://doi.org/10.1007/s11892-018-1076-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1076-3

Keywords

Navigation