Skip to main content

Advertisement

Log in

The Potential Role of Fatty Acids in Treating Diabetic Neuropathy

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This review will summarize recent findings of the effect of supplemental fatty acids, with an emphasis on omega-3 polyunsaturated fatty acids, as a treatment for diabetic peripheral neuropathy.

Recent findings

Pre-clinical studies have provided evidence that treating diabetic rodents with δ linolenic acid (omega-6 18:3) and to a greater extent with eicosapentaenoic and docosahexaenoic acids (omega-3 20:5 and 22:6, respectively) improve and even reverse vascular and neural deficits. Additional studies have shown resolvins, metabolites of eicosapentaenoic and docosahexaenoic acids, can induce neurite outgrowth in neuron cultures and that treating type 1 or type 2 diabetic mice with resolvin D1 or E1 provides benefit for peripheral neuropathy similar to fish oil.

Summary

Omega-3 polyunsaturated fatty acids derived from fish oil and their derivatives have anti-inflammatory properties and could provide benefit for diabetic peripheral neuropathy. However, clinical trials are needed to determine whether this statement is true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–54. https://doi.org/10.2337/dc16-2042. This article includes the position statement from the ADA relating to peripheral neuropathy.

    Article  CAS  PubMed  Google Scholar 

  2. •• Grisold A, Callaghan BC, Feldman EL. Mediators of diabetic neuropathy: is hyperglycemia the only culprit? Curr Opin Endocrinol Diabetes Obes. 2017;24:103–11. https://doi.org/10.1097/MED.0000000000000320. This review article describes how metabolic dysregulation as well as non-metabolic factors can contribute to diabetic neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. •• Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, et al. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther. 2018;40:828–49. https://doi.org/10.1016/j.clinthera.2018.04.001. This review utilized a comprehensive literature search and provides background on the epidemiology; diagnosis, and the treatment of neuropathic pain in diabetic peripheral neuropathy.

    Article  PubMed  Google Scholar 

  4. Shin JY, Roh SG, Sharaf B, Lee NH. Risk of major limb amputation in diabetic foot ulcer and accompanying disease: a meta-analysis. J Plast Reconstr Aesthet Surg. 2017;70:1681–8. https://doi.org/10.1016/j.bjps.2017.07.015.

    Article  PubMed  Google Scholar 

  5. Narres M, Kvitkina T, Claessen H, Droste S, Schuster B, Morbach S, et al. Incidence of lower extremity amputations in the diabetic compared with the non-diabetic population: a systematic review. PLoS One. 2017;12:e0182081. https://doi.org/10.1371/journal.pone.0182081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs. 2016;21:393–407. https://doi.org/10.1080/14728214.2016.1257605.

    Article  CAS  PubMed  Google Scholar 

  7. Dy SM, Bennett WL, Sharma R, Zhang A, Waldfogel JM, Nesbit SA, et al. Preventing complications and treating symptoms of diabetic peripheral neuropathy. AHRQ Comparative Effectiveness Reviews Agency for Healthcare and Quality (US); 2017 March Report No:17-EHCOO5-EF.

  8. Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: a update. Am Fam Physician. 2016;94:227–34.

    PubMed  Google Scholar 

  9. Dobrowsky RT. Targeting the diabetic chaperome to improve peripheral neuropathy. Curr Diab Rep. 2016;16:71. https://doi.org/10.1007/s11892-016-0769-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathy. Curr Diab Rep. 2016;16:29. https://doi.org/10.1007/s11892-016-0727-5. This is a recent review article describing inflammation as a target for diabetic neuropathy. The article includes how different pathogenic mechanisms thought to contribute to diabetic neuropathy increase inflammatory stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol. 2015;93:1021–7. https://doi.org/10.1139/cjpp-2014-0353.

    Article  CAS  PubMed  Google Scholar 

  12. •• Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015;15:89. https://doi.org/10.1007/s11892-015-0671-9. This was one of the earliest review article describing possible mechanisms responsible for mitochondrial dysfunction in diabetes.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol. 2014;49:536–46. https://doi.org/10.1007/s12035-013-8537-0.

    Article  CAS  PubMed  Google Scholar 

  14. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative Med Cell Longev. 2013;2013:168039–15. https://doi.org/10.1155/2013/168039.

    Article  CAS  Google Scholar 

  15. Varkonyi T, Putz Z, Keresztes K, Martos T, Lengyel C, Stirban A, et al. Current options and perspectives in the treatment of diabetic neuropathy. Curr Pharm Des. 2013;19:4981–5007.

    Article  CAS  PubMed  Google Scholar 

  16. Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2014;30:669–78. https://doi.org/10.1002/dmrr.2549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lupachyk S, Watcho P, Shevalye H, Vareniuk I, Obrosov A, Obrosova IG, et al. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral neuropathy in type 1 diabetic rats. Am J Physiol Endocrinol Metab. 2013;305:E396–404. https://doi.org/10.1152/ajpendo.00186.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lupachyk S, Watcho P, Stavniichuk R, Shevalye H, Obrosova IG. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes. 2013;62:944–52. https://doi.org/10.2337/db12-0716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT, et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab. 2007;293:E1645–55. https://doi.org/10.1152/ajpendo.00479.2007.

    Article  CAS  PubMed  Google Scholar 

  20. Malik RA. Why are there no good treatments for diabetic neuropathy? Lancet Diabetes Endocrinol. 2014;2:607–9. https://doi.org/10.1016/S2213-8587(14)70067-1.

    Article  PubMed  Google Scholar 

  21. •• Malik RA. Wherefore art thou, O treatment for diabetic neuropathy? Int Rev Neurobiol. 2016;127:287–317. https://doi.org/10.1016/bs.irn.2016.03.008. This papers outlines some of the failures and issues associated with the lack of success in finding a treatment for diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  22. Holmes A, Coppey LJ, Davidson EP, Yorek MA. Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. J Diabetes Res. 2015;307285:1–8. https://doi.org/10.1155/2015/307285.

    Article  CAS  Google Scholar 

  23. Yorek MS, Obrosov A, Shevalye H, Holmes A, Harper MM, Kardon RH, et al. Effect of diet-induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice. J Peripher Nerv Syst. 2015;20:24–31. https://doi.org/10.1111/jns.12111.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Davidson EP, Coppey LJ, Kardon RH, Yorek MA. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Invest Ophthalmol Vis Sci. 2014;55:1222–30. https://doi.org/10.1167/iovs.13-13794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson EP, Coppey LJ, Dake B, Yorek MA. Effect of treatment of Sprague-Dawley rats with AVE7688, enalapril, or candoxatril on diet-induced obesity. J Obes. 2011;686952:1–9. https://doi.org/10.1155/2011/686952.

    Article  CAS  Google Scholar 

  26. Davidson EP, Coppey LJ, Calcutt NA, Oltman CL, Yorek MA. Diet-induced obesity in Sprague-Dawley rats causes microvascular and neural dysfunction. Diabetes Metab Res Rev. 2010;26:306–18. https://doi.org/10.1002/dmrr.1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Obrosova IG, Ilnytska O, Lyzogubov VV, Pavlov IA, Mashtalir N, Nadler JL, et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes. 2007;56:2598–608. https://doi.org/10.2337/db06-1176.

    Article  CAS  PubMed  Google Scholar 

  28. Hinder LM, O’Brien PD, Hayes JM, Backus C, Solway AP, Sims-Robinson C, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech. 2017;10:717–25. https://doi.org/10.1242/dmm.028530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu L, Tang D, Guan M, Xie C, Xue Y. Effect of high-fat diet on peripheral neuropathy in C57Bl/6 mice. Int J Endocrinol 2014::305205. Doi:https://doi.org/10.1155/2014/305205.

    Google Scholar 

  30. Ozay R, Uzar E, Aktas A, Uyar ME, Gurer B, Evliyaoglu O, et al. The role of oxidative stress and inflammatory response in high-fat diet induced peripheral neuropathy. J Chem Neuroanat. 2014;55:51–7. https://doi.org/10.1016/j.jchemneu.2013.12.003.

    Article  CAS  PubMed  Google Scholar 

  31. • Cortez M, Singleton JR, Smith AG. Glucose intolerance, metabolic syndrome, and neuropathy. Handb Clin Neurol. 2014;126:109–22. https://doi.org/10.1016/B978-0-444-53480-4. This paper presents studies demonstrating that peripheral neuropathy develops in human subjects in the pre-diabetic phase.

    Article  PubMed  Google Scholar 

  32. Papanas N, Ziegler D. Prediabetic neuropathy: does it exist? Curr Diab Rep. 2012;12:376–83. https://doi.org/10.1007/s11892-012-0278-3.

    Article  PubMed  Google Scholar 

  33. Cho YR, Lim JH, Kim MY, Kim TW, Hong BY, Kim YS, et al. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS One. 2014;9:e83204. https://doi.org/10.1371/journal.pone.0083204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Othman A, Benghozi R, Alecu I, Wei Y, Niesor E, von Eckardstein A, et al. Fenofibrate lowers atypical sphingolipids in plasma of dyslipidemic patients: a novel approach for treating diabetic neuropathy? J Clin Lipidol. 2015;9:568–75. https://doi.org/10.1016/j.jacj.2015.03.011.

    Article  PubMed  Google Scholar 

  35. Czupryniak L, Joshi SR, Gogtay JA, Lopez M. Effect of micronized fenofibrate on microvascular complications of type 2 diabetes: a systematic review. Expert Opin Pharmacother. 2016;17:1463–73. https://doi.org/10.1080/14656566.2016.1195811.

    Article  CAS  PubMed  Google Scholar 

  36. Davis TM, Yeap BB, Davis WA, Bruce DG. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Freemantle Diabetes Study. Diabetologia. 2008;51:562–6. https://doi.org/10.1007/s00125-007-0909-2.

    Article  CAS  PubMed  Google Scholar 

  37. Rajamani K, Colman PG, Li LP, Best JD, Voysey M, D'Emden MC, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373:1780–8. https://doi.org/10.1016/S0140-6736(09)60698-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44. https://doi.org/10.1056/NEJMoa1001288.

    Article  CAS  Google Scholar 

  39. Grisold A, Callaghan BC, Feldman EL. Mediators of diabetic neuropathy: is hyperglycemia the only culprit? Curr Opin Endocrinol Diabetes Obes. 2017;24:103–11. https://doi.org/10.1097/MED.0000000000000320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50.

    Article  CAS  PubMed  Google Scholar 

  41. Pitel S, Raccah D, Gerbi A, Pieroni G, Vague P, Coste TC. At low doses, a gamma-linolenic acid-lipoic acid conjugate is more effective than docosahexaenoic acid-enriched phospholipids in preventing neuropathy in diabetic rats. J Nutr. 2007;137:368–72. https://doi.org/10.1093/jn/137.2.368.

    Article  CAS  PubMed  Google Scholar 

  42. Brenner RR. Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids. 2003;68:151–62.

    Article  CAS  PubMed  Google Scholar 

  43. Tao M, McDowell MA, Saydah SH, Eberhardt MS. Relationship of polyunsaturated fatty acid intake to peripheral neuropathy among adults with diabetes in the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Diabetes Care. 2008;31:93–5. https://doi.org/10.2337/dc07-0931.

    Article  CAS  PubMed  Google Scholar 

  44. Tomlinson DR, Robinson JP, Compton AM, Keen P. Essential fatty acid treatment: effects on nerve conduction, polyol pathway and axonal transport in streptozotocin diabetic rats. Diabetologia. 1989;32:655–9.

    Article  CAS  PubMed  Google Scholar 

  45. Cameron NE, Cotter MA, Robertson S. Essential fatty acid diet supplementation. Effects on peripheral nerve and skeletal muscle function and capillarization in streptozotocin-induced diabetic rats. Diabetes. 1991;40:532–9.

    Article  CAS  PubMed  Google Scholar 

  46. Burnard SL, McMurchie EJ, Leifert WR, Patten GS, Muggli R, Raederstorff D, et al. Cilazapril and dietary gamma-linolenic acid prevent the deficit in sciatic nerve conduction velocity in the streptozotocin diabetic rat. J Diabetes Complicat. 1998;12:65–73.

    Article  CAS  Google Scholar 

  47. Coste T, Pierlovisi M, Leonardi J, Dufayet D, Gerbi A, Lafont H, et al. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats. J Nutr Biochem. 1999;10:411–20.

    Article  CAS  PubMed  Google Scholar 

  48. Cameron NE, Cotter MA, Horrobin DH, Trischler HJ. Effects of alpha-lipoic acid on neurovascular function in diabetic rats: interaction with essential fatty acids. Diabetologia. 1998;41:390–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hounsom L, Horrobin DF, Trischler H, Corder R, Tomlinson DR. A lipoic acid-gamma linolenic acid conjugate is effective against multiple indices of experimental diabetic neuropathy. Diabetologia. 1998;41:839–43. https://doi.org/10.1007/s001250050996.

    Article  CAS  PubMed  Google Scholar 

  50. Shotton HR, Broadbent S, Lincoln J. Prevention and partial reversal of diabetes-induced changes in enteric nerves of the rat ileum by combined treatment with alpha-lipoic acid and evening primrose oil. Auton Neurosci. 2004;111:57–65. https://doi.org/10.1016/j.autneu.2004.02.004.

    Article  CAS  PubMed  Google Scholar 

  51. Ford I, Cotter MA, Cameron NE, Greaves M. The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism. 2001;50:868–75. https://doi.org/10.1053/meta.2001.24914.

    Article  CAS  PubMed  Google Scholar 

  52. Jamal GA, Carmichael H. The effect of gamma-linolenic acid on human diabetic peripheral neuropathy: a double-blind placebo-controlled trial. Diabet Med. 1990;7:319–23.

    Article  CAS  PubMed  Google Scholar 

  53. Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The Gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993;16:8–15.

    Article  CAS  PubMed  Google Scholar 

  54. Palacios-Palaez R, Lukiw W, Bazan N. Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative diseases. Mol Neurobiol. 2010;41:367–74. https://doi.org/10.1007/s12035-010-8139-z.

    Article  CAS  Google Scholar 

  55. Farooqui A. n-3 fatty acid-derived lipid mediators in the brain: new weapons against oxidative stress and inflammation. Curr Med Chem. 2012;19:532–43.

    Article  CAS  PubMed  Google Scholar 

  56. Coppey L, Holmes A, Davidson E, Yorek M. Partial replacement with menhaden oil improves peripheral neuropathy in high-fat-fed low-dose streptozotocin type 2 diabetic rat. J Nutr Metab 2012:950517. https://doi.org/10.1155/2012/950517.

    Article  CAS  Google Scholar 

  57. Coppey L, Davidson E, Obrosov A, Yorek M. Enriching the diet with menhaden oil improves peripheral neuropathy in streptozotocin-induced type 1 diabetic rats. J Neurophysiol. 2015;113:701–8. https://doi.org/10.1152/jn.00718.2014.

    Article  CAS  PubMed  Google Scholar 

  58. Shevalye H, Yorek M, Coppey L, Holmes A, Harper MM, Kardon RH, et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol. 2015;114:199–208. https://doi.org/10.1152/jn.00224.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davidson E, Holmes A, Coppey L, Yorek M. Effect of combination therapy consisting of enalapril, α-lipoic acid, and menhaden oil on diabetic neuropathy in a high fat/low dose streptozotocin treated rat. Eur J Pharmacol. 2015;765:258–67. https://doi.org/10.1016/j.ejphar.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  60. •• Yorek M, Coppey L, Shevalye H, Obrosov A, Kardon R, Yorek M. Effect of treatment with salsalate, menhaden oil, combination of salsalate and menhaden oil, or resolvin D1 of C57Bl/6J type 1 diabetic mouse on neuropathic endpoints. J Nutr Metab 2016:5905891. https://doi.org/10.1016/j.ejphar.2015.08.015. One of the first papers demonstrating that salsalate when in combination with fish oil increases resolvin production greater than fish oil alone.

    Article  CAS  PubMed  Google Scholar 

  61. Yorek MS, Obrosov A, Shevalye H, Coppey LJ, Kardon RH, Yorek MA. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, α-lipoic acid, menhaden oil or their combination: Effect on diabetic neuropathy related endpoints. Neuropharmacology. 2017;116:122–31. https://doi.org/10.1016/j.neuropharm.2016.12.022.

    Article  CAS  PubMed  Google Scholar 

  62. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26:1015–35.

    CAS  PubMed  Google Scholar 

  63. Yorek MA. Is fish oil a potential treatment for diabetic peripheral neuropathy? Curr Diabetes Rev. 2017; https://doi.org/10.2174/1573399813666170522155327.

    Article  CAS  PubMed  Google Scholar 

  64. Roman-Pintos LM, Villegas-Rivera G, Rodriguez-Carrizalez AD, Miranda-Diaz AG, Cardona-Munoz EG. Diabetic polyneuropathy in type 2 diabetes mellitus: inflammation, oxidative stress, and mitochondrial function. J Diabetes Res. 2016;3425617:1–16. https://doi.org/10.1155/2016/3425617.

    Article  CAS  Google Scholar 

  65. Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep. 2014;14:473. https://doi.org/10.1007/s11910-014-0473-5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gerbi A, Maixent J, Ansaldi J, Pierlovisi M, Coste T, Pelissier JF, et al. Fish oil supplementation prevents diabetes-induec nerve conduction velocity and neuroanatomical changes in rats. J Nutr. 1999;129:207–13. https://doi.org/10.1093/jn/129.1.207.

    Article  CAS  PubMed  Google Scholar 

  67. Julu PO. Essential fatty acids prevent slowed nerve conduction in streptozotocin diabetic rats. J Diabet Complications. 1998;2:185–8.

    Article  Google Scholar 

  68. Heng L, Qi R, Yang R, Xu G. Docosahexaenoic acid inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by decreasing the excitability of DRG neurons. Exp Neurol. 2015;271:291–300. https://doi.org/10.1016/j.expneurol.2015.06.022.

    Article  CAS  PubMed  Google Scholar 

  69. Li M, Wang Y, Cao R, Hou XH, Zhang L, Yang RH, et al. Dietary fish oil inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by blocking nuclear factor-κB-mediated inflammatory pathways. J Nutr Biochem. 2015;26:1147–55. https://doi.org/10.j.jnutbio.2015.05.005.

  70. Okuda Y, Mizutani M, Ogawa M, Sone H, Asano M, Asakura Y, et al. Long-term effects of eicosapentaenoic acid on diabetic peripheral neuropathy and serum lipids in patients with type II diabetes mellitus. J Diabetes Complicat. 1996;10:280–7.

    Article  CAS  Google Scholar 

  71. •• Lewis EJH, Perkins BA, Lovblom LE, Bazinet RP, Wolever TMS, Bril V. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial. Neurology. 2017;88:2294–301. https://doi.org/10.1212/WNL.0000000000004033. First paper to demonstrate that treating diabetic patients with a source of omega-3 polyunsaturated fatty acids promotes corneal nerve regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pritchad N, Edwards K, Shahidi AM, Sampson GP, Russel AW, Malik RA, et al. Corneal markers of diabetic neuropathy. Ocul Surf. 2011;9:17–28.

    Article  Google Scholar 

  73. Travakoli M, Quattrini C, Abbott C, Kallinikos P, Marshall A, Finnigan J, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care. 2010;33:1792–7. https://doi.org/10.2337/dc10-0253.

    Article  Google Scholar 

  74. Malik RA. Early detection of nerve damage and repair in diabetic neuropathy. Nat Clin Pract Neurol. 2008;4:646–7. https://doi.org/10.1038/ncpneuro0938.

    Article  PubMed  Google Scholar 

  75. Ariel A, Serhan C. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 2007;28:176–83.

    Article  CAS  PubMed  Google Scholar 

  76. Kohli P, Levy B. Resolvins and protectins: mediating solutions to inflammation. Brit J Pharmacol. 2009;158:960–71. https://doi.org/10.1111/j.1476-5381.2009.00290.x.

    Article  CAS  Google Scholar 

  77. Cortina M, He J, Li N, Bazan N, Bazan H. Neuroprotectin D1 synthesis and corneal nerve regeneration after experimental surgery and treatment with PEDF plus DHA. Invest Ophthalmol Vis Sci. 2010;51:804–10. https://doi.org/10.1167/iovs.09-3641.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gordon W, Bazan N. Mediator lipidomics in ophthalmology: targets for modulation in inflammation, neuroprotection and nerve regeneration. Curr Eye Res. 2013;38:995–1005. https://doi.org/10.3109/02713683.2013.827211.

    Article  CAS  PubMed  Google Scholar 

  79. Robson L, Dyall S, Sidloff D, Michael-Titus A. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurons throughout development and in aged animals. Neurobiol Aging. 2010;31:678–87. https://doi.org/10.1016/j.neurobiolaging.2008.05.027.

    Article  CAS  PubMed  Google Scholar 

  80. • Obrosov A, Coppey LJ, Shevalye H, Yorek MA. Effect of fish oil vs. resolvin D1, E1, methyl esters of resolvins D1 or D2 on diabetic peripheral neuropathy. J Neurol Neurophysiol 2017:8: in press. Doi:https://doi.org/10.4172/2155-9562.1000453. The first paper to describe the effects of resolvin D1 and E1 on diabetic peripheral neuropathy.

  81. •• Yorek MA. Is fish oil a potential treatment for diabetic peripheral neuropathy? Curr Diabetes Rev 2017 in press. Doi:https://doi.org/10.2174/1573399813666170522155327. A recent review article describing the potential benefits of fish oil on diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  82. Coppey LJ, Shevalye H, Obrosov A, Davidson EP, Yorek MA. Determination of peripheral neuropathy in high-fat diet fed low-dose streptozotocin-treated female C57Bl/6J mice and Sprague-Dawley rats. J Diabetes Investig. 2018; https://doi.org/10.1111/jdi.12814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen J, Shetty S, Zhang P, Gao R, Hu Y, Wang S, et al. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Tox Appl Pharma. 2014;277:118–23. https://doi.org/10.1016/j.taap.2014.03.017.

    Article  CAS  Google Scholar 

  84. van Dam AD, Nahon KJ, Kooijman S, van den Berg SM, Kanhai AA, Kikuchi T, et al. Salsalate activates brown adipose tissue in mice. Diabetes. 2015;64:1544–54. https://doi.org/10.2337/db14-1125.

    Article  CAS  PubMed  Google Scholar 

  85. Chai W, Liu J, Fowler D, Barrett E, Liu Z. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011;34:1634–8. https://doi.org/10.2337/dc10-2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ariel D, Kim SH, Liu A, Abbasi F, Lamendola CA, Grove K, et al. Salsalate-induced changes in lipid, lipoprotein, and apoprotein concentrations in overweight or obese, insulin-resistant, nondiabetic individuals. J Clinical Lipidol. 2015;9:658–63. https://doi.org/10.1016/j.jacl.2015.06.009.

    Article  Google Scholar 

  87. Goldfine A, Fonseca V, Jablonski K, Pyle L, Staten M, Shoelson S. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152:346–57. https://doi.org/10.7326/0003-4819-152-6-201003160-00004.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA, et al. Salicylate (salsalate) in patients with type 2 diabetes. Ann Intern Med. 2013;159:1–12. https://doi.org/10.7326/0003-4819-159-1-201307020-00003.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci. 2008;1:36–43. https://doi.org/10.1111/j.1752-8062.2008.00026.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davidson EP, Coppey LJ, Shevalye H, Obrosov A, Yorek MA. Effect of dietary content of menhaden oil with or without salsalate on neuropathic endpoints in high fat fed/low dose streptozotocin treated Sprague-Dawley rats. J Diabetes Res. 2018;2969127. https://doi.org/10.1155/2018/2967127.

    Article  Google Scholar 

  91. Mantovani A, Rigolon R, Mingolla L, Pichiri I, Cavalieri V, Salvotelli L, et al. Nonalcoholic fatty liver disease is associated with an increased prevalence of distal symmetric polyneuropathy in adult patients with type 1 diabetes. J Diabetes Complicat. 2017;31:1021–6. https://doi.org/10.1016/j.jdiacomp.2017.01.024.

    Article  Google Scholar 

  92. Williams KH, Burns K, Constantino M, Shackel NA, Prakoso E, Wong J, et al. An association of large-fibre peripheral nerve dysfunction with non-invasive measures of liver fibrosis secondary to non-alcoholic fatty liver disease in diabetes. J Diabetes Complicat. 2015;29:1240–7. https://doi.org/10.1016/j.jdiacomp.2015.06.015.

    Article  Google Scholar 

  93. Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev. 2018;14:99–114. https://doi.org/10.1038/nrendo.2017.173.

    Article  CAS  Google Scholar 

  94. Lv WS, Sun RX, Gao YY, Wen JP, Pan RF, Li L, et al. Nonalcoholic fatty liver disease and microvascular complications in type 2 diabetes. World J Gastroenterol. 2013;19:3134–42. https://doi.org/10.3748/wjg.v19.i20.3134.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Yorek.

Ethics declarations

Conflict of Interest

The author has no conflicts of interest to declare. The studies reported in this article from the author’s laboratory were supported by grants from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development [RX000889-06] and by the National Institute of Diabetes and Digestive and Kidney Diseases [DK107339-03] from NIH.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institution guidelines).

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorek, M.A. The Potential Role of Fatty Acids in Treating Diabetic Neuropathy. Curr Diab Rep 18, 86 (2018). https://doi.org/10.1007/s11892-018-1046-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1046-9

Keywords

Navigation