Hypoglycemia Prevention by Algorithm Design During Intravenous Insulin Infusion

  • Susan Shapiro Braithwaite
  • Lisa P. Clark
  • Thaer Idrees
  • Faisal Qureshi
  • Oluwakemi T. Soetan
Hospital Management of Diabetes (A Wallia and JJ Seley, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Hospital Management of Diabetes


Purpose of Review

This review examines algorithm design features that may reduce risk for hypoglycemia while preserving glycemic control during intravenous insulin infusion. We focus principally upon algorithms in which the assignment of the insulin infusion rate (IR) depends upon maintenance rate of insulin infusion (MR) or a multiplier.

Recent Findings

Design features that may mitigate risk for hypoglycemia include use of a mid-protocol bolus feature and establishment of a low BG threshold for temporary interruption of infusion. Computer-guided dosing may improve target attainment without exacerbating risk for hypoglycemia. Column assignment (MR) within a tabular user-interpreted algorithm or multiplier may be specified initially according to patient characteristics and medical condition with revision during treatment based on patient response.


We hypothesize that a strictly increasing sigmoidal relationship between MR-dependent IR and BG may reduce risk for hypoglycemia, in comparison to a linear relationship between multiplier-dependent IR and BG. Guidelines are needed that curb excessive up-titration of MR and recommend periodic pre-emptive trials of MR reduction. Future research should foster development of recommendations for “protocol maxima” of IR appropriate to patient condition.


Hypoglycemia Critical care Insulin protocol Insulin infusion Best practices Critical care protocols 



Blood glucose


Continuous glucose monitoring


Intensive care unit


Infusion rate of insulin




Maintenance rate of insulin infusion


Compliance with Ethical Standards

Conflict of Interest

Susan Shapiro Braithwaite has a patent for an insulin algorithm which has not yet been embodied as a device (U.S. Patent No. 8,721,584 issued). She is on the Editorial Board for Endocrine Practice, as an Associate Editor. She also receives honoraria form the American Diabetes Association for book reviews.

Lisa P. Clark, Thaer Idrees, Faisal Qureshi, and Oluwakemi T. Soetan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40(12):3251–76.CrossRefPubMedGoogle Scholar
  2. 2.
    Cobaugh DJ, Maynard G, Cooper L, Kienle PC, Vigersky R, Childers D, et al. Enhancing insulin-use safety in hospitals: practical recommendations from an ASHP Foundation expert consensus panel. Am J Health Syst Pharm. 2013;70(16):1404–13.CrossRefPubMedGoogle Scholar
  3. 3.
    Braithwaite SS, Bavda DB, Idrees T, Qureshi F, Soetan OT. Hypoglycemia reduction strategies in the ICU. Curr Diab Rep. 2017;17(12):133.CrossRefPubMedGoogle Scholar
  4. 4.
    International_Hypoglycaemia_Study_Group. Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical trials: a joint position statement of the American Diabetes Association and the European Association for the Study of Diabetes: Table 1. Diabetes Care. 2017;40(1):155–7.CrossRefGoogle Scholar
  5. 5.
    Glycemic Targets: Standards of Medical Care in Diabetes—2018. Diabetes Care. 2018;41 (Supplement 1):S55–S64Google Scholar
  6. 6.
    14. Diabetes Care in the Hospital. Diabetes Care. 2017;40(Supplement 1):S120–S127.Google Scholar
  7. 7.
    • Andreassen S, Pielmeier U, Chase G. Receptor-based models of insulin saturation dynamics. Proceedings of the Sixth IASTED International Conference on Biomedical Engineering; Innsbruck, Austria. 1713399: ACTA Press; 2008. p. 182–6. This article describes saturation dynamics, potentially attributable to the interaction of insulin with its receptor, with discussion of infusion rates and plasma insulin concentrations that achieve half-effect on insulin action, and with the hypothesis that insulin infusion rates greater than 8 units per hr should be avoided in order to reduce risk for hypoglycemia. Google Scholar
  8. 8.
    Chase JG, Shaw G, Le Compte A, Lonergan T, Willacy M, Wong X-W, et al. Implementation and evaluation of the SPRINT protocol for tight glycaemic control in critically ill patients: a clinical practice change. Crit Care. 2008;12(2):R49.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Evans A, Shaw GM, Le Compte A, Tan C-S, Ward L, Steel J, et al. Pilot proof of concept clinical trials of Stochastic Targeted (STAR) glycemic control. Ann Intensive Care. 2011;1(1):38.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Evans A, Le Compte A, Tan CS, Ward L, Steel J, Pretty CG, et al. Stochastic Targeted (STAR) glycemic control: design, safety, and performance. J Diabetes Sci Technol. 2012;6(1):102–15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    •• Penning S, Le Compte AJ, Massion P, Moorhead KT, Pretty CG, Preiser J-C, et al. Second pilot trials of the STAR-Liege protocol for tight glycemic control in critically ill patients. Biomed Eng Online. 2012;11(1):58. Successful control of glycemia in the ICU was demonstrated with low rates of insulin administration. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stewart KW, Pretty CG, Tomlinson H, Thomas FL, Homlok J, Noémi SN, et al. Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis. Ann Intensive Care. 2016;6(1):24.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Pretty CG, Le Compte AJ, Chase J, Shaw GM, Preiser J-C, Penning S, et al. Variability of insulin sensitivity during the first 4 days of critical illness: implications for tight glycemic control. Ann Intensive Care. 2012;2(1):17. This article analyzes and characterizes the reduction of insulin sensitivity observed in the course of ICU care. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thomas F, Pretty CG, Fisk L, Shaw GM, Chase J, Desaive T. Reducing the impact of insulin sensitivity variability on glycaemic outcomes using separate stochastic models within the STAR glycaemic protocol. Biomed Eng Online. 2014;13(1):43.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mudaliar S, Mohideen P, Deutsch R, Ciaraldi TP, Armstrong D, Kim B, et al. Intravenous glargine and regular insulin have similar effects on endogenous glucose output and peripheral activation/deactivation kinetic profiles. Diabetes Care. 2002;25(9):1597–602.CrossRefPubMedGoogle Scholar
  16. 16.
    Umpierrez GE, Kelly JP, Navarrete JE, Casals MMC, Kitabchi AE. Hyperglycemic crises in urban blacks. Arch Intern Med. 1997;157(6):669–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Devi R, Zohra T, Howard BS, Braithwaite SS. Target attainment through algorithm design during intravenous insulin infusion. Diabetes Technol Ther. 2014;16(4):208–18.CrossRefPubMedGoogle Scholar
  18. 18.
    • Wallia A, Gupta S, Garcia C, Schmidt K, Oakes D, Aleppo G, et al. Examination of implementation of intravenous and subcutaneous insulin protocols and glycemic control in heart transplant patients. Endocr Pract. 2014;20(6):527–35. Late plummeting of BG was described as an occasional outcome among patients treated with high dose insulin infusion. CrossRefPubMedGoogle Scholar
  19. 19.
    Steil GM, Deiss D, Shih J, Buckingham B, Weinzimer S, Agus MSD. Intensive care unit insulin delivery algorithms: why so many? How to choose? J Diabetes Sci Technol. 2009;3(1):125–40.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rattan R, Nasraway SA. The future is now: software-guided intensive insulin therapy in the critically ill. J Diabetes Sci Technol. 2013;7(2):548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Davidson PC, Steed RD, Bode BW. Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. Diabetes Care. 2005;28(10):2418–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Kelly JL. Continuous insulin infusion: when, where, and how? Diabetes Spectr. 2014;27(3):218–23.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ullal J, McFarland R, Bachand M, Aloi J. Use of a computer-based insulin infusion algorithm to treat diabetic ketoacidosis in the emergency department. Diabetes Technol Ther. 2016;18(2):100–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Maynard GA, Holdych J, Kendall H, Harrison K, Montgomery PA, Kulasa K. Improving glycemic control safely in critical care patients: a collaborative systems approach in nine hospitals. Endocr Pract. 2017;23(5):583–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Arnold P, Paxton RA, McNorton K, Szpunar S, Edwin SB. The effect of a hypoglycemia treatment protocol on glycemic variability in critically ill patients. J Intensive Care Med. 2013;30(3):156–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Osburne RC, Cook CB, Stockton L, Baird M, Harmon V, Keddo A, et al. Improving hyperglycemia management in the intensive careu. Diabetes Educ. 2006;32(3):394–403.CrossRefPubMedGoogle Scholar
  27. 27.
    Yamashita S, Ng E, Brommecker F, Silverberg J, Adhikari NK. Implementation of the glucommander method of adjusting insulin infusions in critically ill patients. Can J Hosp Pharm. 2011;64(5):333–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Saur NM, Kongable GL, Holewinski S, O’Brien K, Nasraway SA. Software-guided insulin dosing: tight glycemic control and decreased glycemic derangements in critically ill patients. Mayo Clin Proc. 2013;88(9):920–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Neinstein A, MacMaster HW, Sullivan MM, Rushakoff R. A detailed description of the implementation of inpatient insulin orders with a commercial electronic health record system. J Diabetes Sci Technol. 2014;8(4):641–51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Olansky L, Sam S, Lober C, Yared J-P, Hoogwerf B. Cleveland clinic cardiovascular intensive care unit insulin conversion protocol. J Diabetes Sci Technol. 2009;3(3):478–86.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marvin MR, Inzucchi SE, Besterman BJ. Computerization of the Yale insulin infusion protocol and potential insights into causes of hypoglycemia with intravenous insulin. Diabetes Technol Ther. 2013;15(3):246–52.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marvin MR, Inzucchi SE, Besterman BJ. Minimization of hypoglycemia as an adverse event during insulin infusion: further refinement of the Yale protocol. Diabetes Technol Ther. 2016;18(8):480–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bellam H, Braithwaite SS. Hospital hypoglycemia: from observation to action. Insulin. 2010;5(1):16–36.CrossRefGoogle Scholar
  34. 34.
    Wong XW, Singh-Levett I, Hollingsworth LJ, Shaw GM, Hann CE, Lotz T, et al. A novel, model-based insulin and nutrition delivery controller for glycemic regulation in critically ill patients. Diabetes Technol Ther. 2006;8(2):174–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Goldberg PA, Siegel MD, Sherwin RS, Halickman JI, Lee M, Bailey VA, et al. Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit. Diabetes Care. 2004;27(2):461–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Goldberg PA, Roussel MG, Inzucchi SE. Clinical results of an updated insulin infusion protocol in critically ill patients. Diabetes Spectr. 2005;18(3):188–91.CrossRefGoogle Scholar
  37. 37.
    DeSantis AJ, Schmeltz LR, Schmidt K, O'Shea-Mahler E, Rhee C, Wells A, et al. Inpatient management of hyperglycemia: the northwestern experience. Endocr Pract. 2006;12(5):491–505.CrossRefPubMedGoogle Scholar
  38. 38.
    Rea RS, Donihi AC, Bobeck M, Herout P, McKaveney TP, Kane-Gill SL, et al. Implementing an intravenous insulin infusion protocol in the intensive care unit. Am J Health Syst Pharm. 2007;64(4):385–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Devi R, Selvakumar G, Clark L, Downer C, Braithwaite SS. A dose-defining insulin algorithm for attainment and maintenance of glycemic targets during therapy of hyperglycemic crises. Diabetes Manag. 2011;1(4):397–412.CrossRefGoogle Scholar
  40. 40.
    Hirsch IB. Intravenous bolus insulin delivery: implications for closed-loop control and hospital care. Diabetes Technol Ther. 2012;14(1):6–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Kreider KE, Lien LF. Transitioning safely from intravenous to subcutaneous insulin. Curr Diab Rep. 2015;15(5):23.CrossRefPubMedGoogle Scholar
  42. 42.
    Tanenberg RJ, Hardee S, Rothermel C, Drake AJ. Use of a computer-guided glucose management system to improve glycemic control and address national quality measures: a 7-year, retrospective observational study at a tertiary care teaching hospital. Endocr Pract. 2017;23(3):331–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Wintergerst KA, Deiss D, Buckingham B, Cantwell M, Kache S, Agarwal S, et al. Glucose control in pediatric intensive care unit patients using an insulin & glucose algorithm. Diabetes Technol Ther. 2007;9(3):211–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Morris AH, Orme J, Truwit JD, Steingrub J, Grissom C, Lee KH, et al. A replicable method for blood glucose control in critically ill patients. Crit Care Med. 2008;36(6):1787–95.CrossRefPubMedGoogle Scholar
  45. 45.
    Hirshberg EL, Lanspa MJ, Wilson EL, Sward KA, Jephson A, Larsen GY, et al. A pediatric intensive care unit bedside computer clinical decision support protocol for hyperglycemia is feasible, safe and offers advantages. Diabetes Technol Ther. 2017;19(3):188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saager L, Collins GL, Burnside B, Tymkew H, Zhang L, Jacobsohn E, et al. A randomized study in diabetic patients undergoing cardiac surgery comparing computer-guided glucose management with a standard sliding scale protocol. J Cardiothorac Vasc Anesth. 2008;22(3):377–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Dumont C, Bourguignon C. Effect of a computerized insulin dose calculator on the process of glycemic control. Am J Crit Care. 2012;21(2):106–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Hovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska L, et al. Blood glucose control by a model predictive control algorithm with variable sampling RateVersusa routine glucose management protocol in cardiac surgery patients: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92(8):2960–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Kopecký P, Mráz M, Bláha J, Lindner J, Svačina Š, Hovorka R, et al. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. Biomed Res Int. 2013;2013:1–8.CrossRefGoogle Scholar
  50. 50.
    Devi R, Zohra T, Howard BS, Braithwaite SS. World Biomedical Frontiers, Section of Diabetes and Obesity. Target attainment through algorithm design during intravenous insulin infusion. World Biomedical Frontiers, Section of Diabetes and Obesity. 2014.Google Scholar
  51. 51.
    Bode BW, Braithwaite SS, Steed RD, Davidson PC. Intravenous insulin infusion therapy: indications, methods, and transition to subcutaneous insulin therapy. Endocrine Pract. 2004;10(Suppl 2):71–80.CrossRefGoogle Scholar
  52. 52.
    Hermayer KL, Neal DE, Hushion TV, Irving MG, Arnold PC, Kozlowski L, et al. Outcomes of a cardiothoracic intensive care web-based online intravenous insulin infusion calculator study at a medical university hospital. Diabetes Technol Ther. 2007;9(6):523–34.CrossRefPubMedGoogle Scholar
  53. 53.
    Dortch MJ, Mowery NT, Ozdas A, Dossett L, Cao H, Collier B, et al. A computerized insulin infusion titration protocol improves glucose control with less hypoglycemia compared to a manual titration protocol in a trauma intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32(1):18–27.CrossRefPubMedGoogle Scholar
  54. 54.
    Cyrus RM, Szumita PM, Greenwood BC, Pendergrass ML. Evaluation of compliance with a paper-based, multiplication-factor, intravenous insulin protocol. Ann Pharmacother. 2009;43(9):1413–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Juneja R, Roudebush CP, Nasraway SA, Golas AA, Jacobi J, Carroll J, et al. Computerized intensive insulin dosing can mitigate hypoglycemia and achieve tight glycemic control when glucose measurement is performed frequently and on time. Crit Care. 2009;13(5):R163.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Newton CA, Smiley D, Bode BW, Kitabchi AE, Davidson PC, Jacobs S, et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column-based algorithms. J Hosp Med. 2010;5(8):432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sandler V, Misiasz MR, Jones J, Baldwin D. Reducing the risk of hypoglycemia associated with intravenous insulin. J Diabetes Sci Technol. 2014;8(5):923–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Markovitz MDLJ, Wiechmann MDRJ, Harris RNN, Hayden RNV, Cooper PAJ, Johnson PAG, et al. Description and evaluation of a glycemic management protocol for patients with diabetes undergoing heart surgery. Endocr Pract. 2002;8(1):10–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Trence DL, Kelly JL, Hirsch IB. The rationale and management of hyperglycemia for in-patients with cardiovascular disease: time for change. J Clin Endocrinol Metab. 2003;88(6):2430–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Ku SY, Sayre CA, Hirsch IB, Kelly JL. New insulin infusion protocol improves blood glucose control in hospitalized patients without increasing hypoglycemia. J Qual Patient Saf. 2005;31(3):141–7.CrossRefGoogle Scholar
  61. 61.
    Braithwaite SS, Edkins R, MacGregor KL, Sredzienski ES, Houston M, Zarzaur B, et al. Performance of a dose-defining insulin infusion protocol among trauma service intensive care unit admissions. Diabetes Technol Ther. 2006;8(4):476–88.CrossRefPubMedGoogle Scholar
  62. 62.
    Oeyen SG, Hoste EA, Roosens CD, Decruyenaere JM, Blot SI. Adherence to and efficacy and safety of an insulin protocol in the critically ill: a prospective observational study. Am J Crit Care. 2007;16(6):599–608.PubMedGoogle Scholar
  63. 63.
    Pattan V, Parsaik A, Brown JK, Kudva YC, Vlahakis N, Basu A. Glucose control in Mayo Clinic intensive care units. J Diabetes Sci Technol. 2011;5(6):1420–6.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Welsh N, Derby T, Gupta S, Fulkerson C, Oakes DJ, Schmidt K, et al. Inpatient hypoglycemic events in a comparative effectiveness trial for glycemic control in a high-risk population. Endocr Pract. 2016;22(9):1040–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Passarelli AJ, Gibbs H, Rowden AM, Efird L, Zink E, Mathioudakis N. Evaluation of a nurse-managed insulin infusion protocol. Diabetes Technol Ther. 2016;18(2):93–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rood E. Use of a computerized guideline for glucose regulation in the intensive care unit improved both guideline adherence and glucose regulation. J Am Med Inform Assoc. 2004;12(2):172–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Boord JB, Sharifi M, Greevy RA, Griffin MR, Lee VK, Webb TA, et al. Computer-based insulin infusion protocol improves glycemia control over manual protocol. J Am Med Inform Assoc. 2007;14(3):278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Juneja R, Roudebush C, Kumar N, Macy A, Golas A, Wall D, et al. Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit. Diabetes Technol Ther. 2007;9:232–40.CrossRefPubMedGoogle Scholar
  69. 69.
    Meynaar IA, Dawson L, Tangkau PL, Salm EF, Rijks L. Introduction and evaluation of a computerised insulin protocol. Intensive Care Med. 2007;33(4):591–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Cavalcanti AB, Silva E, Pereira AJ, Caldeira-Filho M, Almeida FP, Westphal GA, et al. A randomized controlled trial comparing a computer-assisted insulin infusion protocol with a strict and a conventional protocol for glucose control in critically ill patients. J Crit Care. 2009;24(3):371–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Hoekstra M, Vogelzang M, Verbitskiy E, Nijsten MWN. Health technology assessment review: computerized glucose regulation in the intensive care unit—how to create artificial control. Crit Care. 2009;13(5):223.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Barletta JF, McAllen KJ, Eriksson EA, Deines G, Blau SA, Thayer SC, et al. The effect of a computer-assisted insulin protocol on glycemic control in a surgical intensive care unit. Diabetes Technol Ther. 2011;13(4):495–500.CrossRefPubMedGoogle Scholar
  73. 73.
    Crockett S, Suarez-Cavelier J, Accola K, Hadas L, Harnage D, Garrett P, et al. Risk of postoperative hypoglycemia in cardiovascular surgical patients receiving computer-based versus paper-based insulin therapy. Endocr Pract. 2012;18(4):529–37.CrossRefPubMedGoogle Scholar
  74. 74.
    Horibe M, Nair BG, Yurina G, Neradilek MB, Rozet I. A novel computerized fading memory algorithm for glycemic control in postoperative surgical patients. Anesth Analg. 2012;115(3):1.CrossRefGoogle Scholar
  75. 75.
    Van Herpe T, Mesotten D, Wouters PJ, Herbots J, Voets E, Buyens J, et al. LOGIC-insulin algorithm-guided versus nurse-directed blood glucose control during critical illness: the LOGIC-1 single-center, randomized, controlled clinical trial. Diabetes Care. 2012;36(2):188–94.CrossRefPubMedGoogle Scholar
  76. 76.
    Amrein K, Kachel N, Fries H, Hovorka R, Pieber TR, Plank J, et al. Glucose control in intensive care: usability, efficacy and safety of Space GlucoseControl in two medical European intensive care units. BMC Endocr Disord. 2014;14:62.
  77. 77.
    May A, Mukherjee K, Albaugh V, Richards J, Rumbaugh K. Glycemic control in critically ill surgical patients: risks and benefits. Open Access Surg. 2015;8:27–42.CrossRefGoogle Scholar
  78. 78.
    Okabayashi T, Nishimori I, Maeda H, Yamashita K, Yatabe T, Hanazaki K. Effect of intensive insulin therapy using a closed-loop glycemic control system in hepatic resection patients: a prospective randomized clinical trial. Diabetes Care. 2009;32(8):1425–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yatabe T, Yamazaki R, Kitagawa H, Okabayashi T, Yamashita K, Hanazaki K, et al. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients*. Crit Care Med. 2011;39(3):575–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, et al. Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial. Crit Care. 2013;17(4):R159.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Boom DT, Sechterberger MK, Rijkenberg S, Kreder S, Bosman RJ, Wester JPJ, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial. Crit Care. 2014;18(4):453.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Okabayashi T, Shima Y, Sumiyoshi T, Kozuki A, Tokumaru T, Iiyama T, et al. Intensive versus intermediate glucose control in surgical intensive care unit patients. Diabetes Care. 2014;37(6):1516–24.CrossRefPubMedGoogle Scholar
  83. 83.
    Preiser J-C, Chase JG, Hovorka R, Joseph JI, Krinsley JS, De Block C, et al. Glucose control in the ICU. J Diabetes Sci Technol. 2016;10(6):1372–81.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Blaha J, Kopecky P, Matias M, Hovorka R, Kunstyr J, Kotulak T, et al. Comparison of three protocols for tight glycemic control in cardiac surgery patients. Diabetes Care. 2009;32(5):757–61.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Mesotten D, Dubois J, Van Herpe T, van Hooijdonk RT, Wouters R, Coart D, et al. Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial. Crit Care. 2017;21:212.
  86. 86.
    Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.CrossRefPubMedGoogle Scholar
  87. 87.
    Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefPubMedGoogle Scholar
  88. 88.
    Dungan KM, Gavrilina T, Andridge R, Hall C, Schuster DS. Long-term safety and efficacy of a universal nursing-run intravenous insulin guideline. Jt Comm J Qual Patient Saf. 2014;40(3):119–AP5.CrossRefPubMedGoogle Scholar
  89. 89.
    De Block CEM, Rogiers P, Jorens PG, Schepens T, Scuffi C, Van Gaal LF. A comparison of two insulin infusion protocols in the medical intensive care unit by continuous glucose monitoring. Ann Intensive Care. 2016;6(1):115.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Clergeau A, Parienti J-J, Reznik Y, Clergeau D, Seguin A, Valette X, et al. Impact of a paper-based dynamic insulin infusion protocol on glycemic variability, time in target, and hypoglycemic risk: a stepped wedge trial in medical intensive care unit patients. Diabetes Technol Ther. 2017;19(2):115–23.CrossRefPubMedGoogle Scholar
  91. 91.
    Collard B, Sturgeon J, Patel N, Asharia S. The variable rate intravenous insulin infusion protocol. BMJ Qual Improv Rep. 2013;2(2):u203060.w1409.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gwinup G, Steinberg T. The management of diabetic coma. Calif Med West J Med. 1969;111:347–50.Google Scholar
  93. 93.
    Brown EM. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab. 1983;56(3):572–81.CrossRefPubMedGoogle Scholar
  94. 94.
    Braithwaite D, Umpierrez G, Braithwaite S. A quadruply-asymmetric sigmoid to describe the insulin-glucose relationship during intravenous insulin infusion. J Healthcare Eng. 2014;5(1):23–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Susan Shapiro Braithwaite
    • 1
    • 2
  • Lisa P. Clark
    • 3
  • Thaer Idrees
    • 4
  • Faisal Qureshi
    • 5
  • Oluwakemi T. Soetan
    • 4
  1. 1.WilmetteUSA
  2. 2.Endocrinology Consults and Care, S.CChicagoUSA
  3. 3.Presence Saint Francis HospitalEvanstonUSA
  4. 4.Presence Saint Joseph HospitalChicagoUSA
  5. 5.Presence Saint Joseph HospitalChicagoUSA

Personalised recommendations