United States Renal Data System. USRDS annual data report: Epidemiology of kidney disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2017. https://www.usrds.org/adr.aspx
Google Scholar
IDF Diabetes Atlas 7th Edition. 2015. http://www.diabetesatlas.org.
Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864–83. https://doi.org/10.2337/dc14-1296.
Article
PubMed
PubMed Central
Google Scholar
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–88.
CAS
Article
PubMed
Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352, 837:–53.
Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8. https://doi.org/10.1056/NEJMoa011489.
CAS
Article
PubMed
Google Scholar
Gruden G, Perin PC, Camussi G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr Diabetes Rev. 2005;1(1):27–40. https://doi.org/10.2174/1573399052952622.
CAS
Article
PubMed
Google Scholar
Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12(1):13–26. https://doi.org/10.1038/nrneph.2015.175.
CAS
Article
PubMed
Google Scholar
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine. 2015;48(3):730–42. https://doi.org/10.1007/s12020-014-0437-1.
CAS
Article
PubMed
Google Scholar
Standards of Medical Care in Diabetes. Diabetes Care. 2017;40(Suppl. 1):S1–S135.
Di Marzo V. Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol. 2008;160:1–24.
PubMed
Google Scholar
Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.
CAS
Article
PubMed
Google Scholar
Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74(2):129–80. https://doi.org/10.1016/S0163-7258(97)82001-3.
CAS
Article
PubMed
Google Scholar
Pertwee RG. Pharmacological actions of cannabinoids. Handb Exp Pharmacol. 2005;168:1–51.
CAS
Article
Google Scholar
Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, et al. Trends Pharmacol Sci. 2015;36(5):277–96. https://doi.org/10.1016/j.tips.2015.02.008.
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes. 2009;33(Suppl 2):S18–24. https://doi.org/10.1038/ijo.2009.67.
Article
Google Scholar
Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001;134(6):1151–4. https://doi.org/10.1038/sj.bjp.0704379.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrié P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord. 2004;28(4):640–8. https://doi.org/10.1038/sj.ijo.0802583.
CAS
Article
PubMed
Google Scholar
Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112(3):423–31. https://doi.org/10.1172/JCI17725.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gruden G, Barutta F, Kunos G, Pacher P. Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol. 2016;173(7):1116–27. https://doi.org/10.1111/bph.13226.
CAS
Article
PubMed
Google Scholar
Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med. 2013;19(9):1132–40. https://doi.org/10.1038/nm.3265.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kobayashi N, Gao SY, Chen J, Saito K, Miyawaki K, Li CY, et al. Process formation of the renal glomerular podocyte: is there common molecular machinery for processes of podocytes and neurons? Anat Sci Int. 2004;79(1):1–10. https://doi.org/10.1111/j.1447-073x.2004.00066.x.
CAS
Article
PubMed
Google Scholar
Weide T, Huber TB. Signaling at the slit: podocytes chat by synaptic transmission. J Am Soc Nephrol. 2009;20(9):1862–4. https://doi.org/10.1681/ASN.2009070691.
Article
PubMed
Google Scholar
Rastaldi MP, Armelloni S, Berra S, Li M, Pesaresi M, Poczewski H, et al. Glomerular podocytes possess the synaptic vesicle molecule Rab3A and its specific effector rabphilin-3a. Am J Pathol. 2003;163(3):889–99. https://doi.org/10.1016/S0002-9440(10)63449-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
• Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Rastaldi MP, Perin PC, Gruden G. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes. 2010;59:1046–054. This study provided the first evidence of a CB1R involvement in experimental type 1 diabetes.
•• Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, et al. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci U S A. 2014;111(50):E5420–8. https://doi.org/10.1073/pnas.1419901111. A key study describing the interaction between the ECS and the renin angiotensin system.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology. 2012;153(3):1387–96. https://doi.org/10.1210/en.2011-1423.
CAS
Article
PubMed
Google Scholar
• Lecru L, Desterke C, Grassin-Delyle S, Chatziantoniou C, Vandermeersch S, Devocelle A, et al. Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int. 2015;88:72–84. This study demonstrated a role of CB1R overexpression in progressive renal diseases.
CAS
Article
PubMed
Google Scholar
• Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, et al. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes. 2011;60:2386–96. This study provides the first evidence of a CB2R involvement in experimental type 1 diabetes.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin CL, Hsu YC, Lee PH, Lei CC, Wang JY, Huang YT, et al. Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med. 2014;92(7):779–92. https://doi.org/10.1007/s00109-014-1125-6.
CAS
Article
PubMed
Google Scholar
Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S, et al. Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int. 2014;86(5):979–90. https://doi.org/10.1038/ki.2014.165.
CAS
Article
PubMed
Google Scholar
Jenkin KA, McAinch AJ, Zhang Y, Kelly DJ, Hryciw DH. Elevated cannabinoid receptor 1 and G protein-coupled receptor 55 expression in proximal tubule cells and whole kidney exposed to diabetic conditions. Clin Exp Pharmacol Physiol. 2015;42(3):256–62. https://doi.org/10.1111/1440-1681.12355.
CAS
Article
PubMed
Google Scholar
Jenkin KA, McAinch AJ, Briffa JF, Zhang Y, Kelly DJ, Pollock CA, et al. Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling. Cell Physiol Biochem. 2013;32(5):1309–19. https://doi.org/10.1159/000354529.
CAS
Article
PubMed
Google Scholar
Janiak P, Poirier B, Bidouard JP, Cadrouvele C, Pierre F, Gouraud L, et al. Blockade of cannabinoid CB1 receptor improves renal function, metabolic profile, and increased survival of obese Zucker rats. Kidney Int. 2007;72(11):1345–57. https://doi.org/10.1038/sj.ki.5002540.
CAS
Article
PubMed
Google Scholar
Russell JC, Kelly SE, Diane A, Wang Y, Mangat R, Novak S, et al. Rimonabant-mediated changes in intestinal lipid metabolism and improved renal vascular dysfunction in the JCR : LA-cp rat model of prediabetic metabolic syndrome. Am J Physiol Gastrointest Liver Physiol. 2007;299:G507–16.
Article
Google Scholar
Barutta F, Grimaldi S, Gambino R, Vemuri K, Makriyannis A, Annaratone L, et al. Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy. Nephrol Dial Transplant. 2017; https://doi.org/10.1093/ndt/gfx010.
Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014;2.pii: e12108.
Lim SK, Park SH. The high glucose-induced stimulation of B1R and B2R expression via CB(1)R activation is involved in rat podocyte apoptosis. Life Sci. 2012;91(19-20):895–906. https://doi.org/10.1016/j.lfs.2012.07.020.
CAS
Article
PubMed
Google Scholar
Kim D, Lim S, Park M, Choi J, Kim J, Han H, et al. Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal. 2014;26(9):1774–82. https://doi.org/10.1016/j.cellsig.2014.04.008.
CAS
Article
PubMed
Google Scholar
Rozenfeld R, Gupta A, Gagnidze K, Lim MP, Gomes I, Lee-Ramos D, et al. AT1R–CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011;30(12):2350–63. https://doi.org/10.1038/emboj.2011.139.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jourdan T, Szanda G, Cinar R, Godlewski G, Holovac DJ, Park JK, et al. Developmental role of macrophage cannabinoid-1 receptor signaling in type 2 diabetes. Diabetes. 2017;66(4):994–1007. https://doi.org/10.2337/db16-1199.
CAS
Article
PubMed
Google Scholar
Zoja C, Locatelli M, Corna D, Villa S, Rottoli D, Nava V, et al. Therapy with a selective cannabinoid receptor type 2 agonist limits albuminuria and renal injury in mice with type 2 diabetic nephropathy. Nephron. 2016;132:59–69.
CAS
Article
PubMed
Google Scholar
Montecucco F, Burger F, Mach F, Steffens S. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol. 2008;294(3):H1145–55. https://doi.org/10.1152/ajpheart.01328.2007.
CAS
Article
PubMed
Google Scholar
Menne J, Eulberg D, Beyer D, Baumann M, Saudek F, Valkusz Z, et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant. 2017;32:307–15.
Article
PubMed
Google Scholar
de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 2015;3(9):687–96. https://doi.org/10.1016/S2213-8587(15)00261-2.
Article
PubMed
Google Scholar
Tarabra E, Giunti S, Barutta F, Salvidio G, Burt D, Deferrari G, et al. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes. 2009;58(9):2109–18. https://doi.org/10.2337/db08-0895.
CAS
Article
PubMed
PubMed Central
Google Scholar
Giunti S, Barutta F, Perin PC, Gruden G. Targeting the MCP-1/CCR2 system in diabetic kidney disease. Curr Vasc Pharmacol. 2010;8(6):849–60. https://doi.org/10.2174/157016110793563816.
CAS
Article
PubMed
Google Scholar
Buraczynska M, Wacinski P, Zukowski P, Dragan M, Ksiazek A. Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes. J Diabetes Complicat. 2014;28(1):35–9. https://doi.org/10.1016/j.jdiacomp.2013.08.005.
Article
PubMed
Google Scholar
Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, et al. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One. 2009;4(6):e5844. https://doi.org/10.1371/journal.pone.0005844.
Article
PubMed
PubMed Central
Google Scholar
Agudo J, Martin M, Roca C, Molas M, Bura AS, Zimmer A, et al. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia. 2010;53(12):2629–40. https://doi.org/10.1007/s00125-010-1894-6.
CAS
Article
PubMed
Google Scholar
Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, de Petrocellis L, et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun. 2017;8:13958. https://doi.org/10.1038/ncomms13958.
CAS
Article
PubMed
PubMed Central
Google Scholar
Walsh SK, Hepburn CY, Keown O, Åstrand A, Lindblom A, Ryberg E, et al. Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach. Pharmacol Res Perspect. 2015;3(3):e00143. https://doi.org/10.1002/prp2.143.
Article
PubMed
PubMed Central
Google Scholar