Skip to main content

Advertisement

Log in

Cardiometabolic Risk in PCOS: More than a Reproductive Disorder

  • Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown.

Recent Findings

Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS.

Summary

PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030. https://doi.org/10.1210/er.2011-1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38(9):1165–74.

    Article  CAS  PubMed  Google Scholar 

  4. Palmert MR, Gordon CM, Kartashov AI, Legro RS, Emans SJ, Dunaif A. Screening for abnormal glucose tolerance in adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(3):1017–23. https://doi.org/10.1210/jcem.87.3.8305.

    Article  CAS  PubMed  Google Scholar 

  5. Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab. 2006;91(2):492–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care. 1999;22(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  7. •• Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:8464. https://doi.org/10.1038/ncomms9464. This recent genome-wide association study identified both replicated and novel genetic susceptibility loci significantly associated with PCOS. This study also reported mendelian randomization evidence for association of genetic risk for obesity and insulin resistance with PCOS diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sir-Petermann T, Maliqueo M, Codner E, Echiburu B, Crisosto N, Perez V, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(12):4637–42. https://doi.org/10.1210/jc.2007-1036.

    Article  CAS  PubMed  Google Scholar 

  9. • Torchen LC, Fogel NR, Brickman WJ, Paparodis R, Dunaif A. Persistent apparent pancreatic beta-cell defects in premenarchal PCOS relatives. J Clin Endocrinol Metab. 2014;99(10):3855–62. https://doi.org/10.1210/jc.2014-1474. This study found peripubertal daughters of women with PCOS have evidence for beta-cell dysfunction, which persists as puberty progresses. This finding suggests PCOS daughters have increased risk for type 2 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. https://doi.org/10.1136/bmj.328.7454.1490.

    Article  PubMed  Google Scholar 

  11. Polycystic ovary syndrome / edited by Andrea Dunaif [and others]. Boston : Blackwell Scientific Publications; St. Louis, Mo. : Distributors, USA and Canada, Mosby-Year Book; 1992.

  12. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.

    Article  Google Scholar 

  13. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–45. https://doi.org/10.1210/jc.2006-0178.

    Article  CAS  PubMed  Google Scholar 

  14. Johnstone EB, Rosen MP, Neril R, Trevithick D, Sternfeld B, Murphy R, et al. The polycystic ovary post-rotterdam: a common, age-dependent finding in ovulatory women without metabolic significance. J Clin Endocrinol Metab. 2010;95(11):4965–72. https://doi.org/10.1210/jc.2010-0202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Legro RS, Chiu P, Kunselman AR, Bentley CM, Dodson WC, Dunaif A. Polycystic ovaries are common in women with hyperandrogenic chronic anovulation but do not predict metabolic or reproductive phenotype. J Clin Endocrinol Metab. 2005;90(5):2571–9. https://doi.org/10.1210/jc.2004-0219.

    Article  CAS  PubMed  Google Scholar 

  16. Fauser BC, Diedrich K, Devroey P. Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update. 2008;14(1):1–14. https://doi.org/10.1093/humupd/dmm034.

    Article  CAS  PubMed  Google Scholar 

  17. Carmina E, Chu MC, Longo RA, Rini GB, Lobo RA. Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab. 2005;90(5):2545–9. https://doi.org/10.1210/jc.2004-2279.

    Article  CAS  PubMed  Google Scholar 

  18. Moghetti P, Tosi F, Bonin C, Di Sarra D, Fiers T, Kaufman JM, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–37. https://doi.org/10.1210/jc.2012-3908.

    Article  CAS  PubMed  Google Scholar 

  19. Welt CK, Gudmundsson JA, Arason G, Adams J, Palsdottir H, Gudlaugsdottir G, et al. Characterizing discrete subsets of polycystic ovary syndrome as defined by the Rotterdam criteria: the impact of weight on phenotype and metabolic features. J Clin Endocrinol Metab. 2006;91(12):4842–8. https://doi.org/10.1210/jc.2006-1327.

    Article  CAS  PubMed  Google Scholar 

  20. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012;97(1):28–38.e25. https://doi.org/10.1016/j.fertnstert.2011.09.024.

    Article  PubMed  Google Scholar 

  21. Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev. 1995;16(3):322–53. https://doi.org/10.1210/edrv-16-3-322.

    Article  CAS  PubMed  Google Scholar 

  22. Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007;8(2):127–41. https://doi.org/10.1007/s11154-007-9046-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dumesic DA, Goodarzi MO, Chazenbalk GD, Abbott DH. Intrauterine environment and polycystic ovary syndrome. Semin Reprod Med. 2014;32(3):159–65. https://doi.org/10.1055/s-0034-1371087.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83(6):2001–5. https://doi.org/10.1210/jcem.83.6.4886.

    CAS  PubMed  Google Scholar 

  25. Adashi EY, Hsueh AJ, Yen SS. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology. 1981;108(4):1441–9. https://doi.org/10.1210/endo-108-4-1441.

    Article  CAS  PubMed  Google Scholar 

  26. Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72(1):83–9. https://doi.org/10.1210/jcem-72-1-83.

    Article  CAS  PubMed  Google Scholar 

  27. Burghen GA, Givens JR, Kitabchi AE. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J Clin Endocrinol Metab. 1980;50(1):113–6. https://doi.org/10.1210/jcem-50-1-113.

    Article  CAS  PubMed  Google Scholar 

  28. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237(3):E214–23.

    CAS  Google Scholar 

  29. DeFronzo RA, Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37(6):667–87.

    Article  CAS  PubMed  Google Scholar 

  30. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes. 1992;41(10):1257–66.

    Article  CAS  PubMed  Google Scholar 

  31. Ciampelli M, Fulghesu AM, Cucinelli F, Pavone V, Caruso A, Mancuso S, et al. Heterogeneity in beta cell activity, hepatic insulin clearance and peripheral insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod. 1997;12(9):1897–901.

    Article  CAS  PubMed  Google Scholar 

  32. Chiu KC, Cohan P, Lee NP, Chuang LM. Insulin sensitivity differs among ethnic groups with a compensatory response in beta-cell function. Diabetes Care. 2000;23(9):1353–8. https://doi.org/10.2337/diacare.23.9.1353.

    Article  CAS  PubMed  Google Scholar 

  33. • Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum Reprod. 2016;31(11):2619–31. https://doi.org/10.1093/humrep/dew243. This meta-analysis confirms earlier studies which find women with PCOS have decreased insulin sensitivity, independent of BMI, using only evidence from highly accurate measures of insulin action.

    Article  PubMed  Google Scholar 

  34. Carmina E, Lobo RA. Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril. 2004;82(3):661–5. https://doi.org/10.1016/j.fertnstert.2004.01.041.

    Article  PubMed  Google Scholar 

  35. DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril. 2005;83(5):1454–60. https://doi.org/10.1016/j.fertnstert.2004.11.070.

    Article  CAS  PubMed  Google Scholar 

  36. Diamanti-Kandarakis E, Kouli C, Alexandraki K, Spina G. Failure of mathematical indices to accurately assess insulin resistance in lean, overweight, or obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(3):1273–6. https://doi.org/10.1210/jc.2003-031205.

    Article  CAS  PubMed  Google Scholar 

  37. Hucking K, Watanabe RM, Stefanovski D, Bergman RN. OGTT-derived measures of insulin sensitivity are confounded by factors other than insulin sensitivity itself. Obesity (Silver Spring). 2008;16(8):1938–45. https://doi.org/10.1038/oby.2008.336.

    Article  CAS  Google Scholar 

  38. Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Investig. 2002;32(Suppl 3):35–45.

    Article  CAS  Google Scholar 

  39. Kahn BB. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell. 1998;92(5):593–6.

    Article  CAS  PubMed  Google Scholar 

  40. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68(6):1456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorenzo C, Wagenknecht LE, Rewers MJ, Karter AJ, Bergman RN, Hanley AJ, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2098–103. https://doi.org/10.2337/dc10-0165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72. https://doi.org/10.2337/diab.42.11.1663.

    Article  CAS  PubMed  Google Scholar 

  43. Holte J, Bergh T, Berne C, Berglund L, Lithell H. Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab. 1994;78(5):1052–8. https://doi.org/10.1210/jcem.78.5.8175959.

    CAS  PubMed  Google Scholar 

  44. Goodarzi MO, Erickson S, Port SC, Jennrich RI, Korenman SG. Beta-cell function: a key pathological determinant in polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(1):310–5. https://doi.org/10.1210/jc.2004-1006.

    Article  CAS  PubMed  Google Scholar 

  45. Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest. 1995;96(1):520–7. https://doi.org/10.1172/jci118064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Meara NM, Blackman JD, Ehrmann DA, Barnes RB, Jaspan JB, Rosenfield RL, et al. Defects in beta-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab. 1993;76(5):1241–7. https://doi.org/10.1210/jcem.76.5.8496316.

    PubMed  Google Scholar 

  47. Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81(3):942–7. https://doi.org/10.1210/jcem.81.3.8772555.

    CAS  PubMed  Google Scholar 

  48. Arslanian SA, Lewy VD, Danadian K. Glucose intolerance in obese adolescents with polycystic ovary syndrome: roles of insulin resistance and beta-cell dysfunction and risk of cardiovascular disease. J Clin Endocrinol Metab. 2001;86(1):66–71. https://doi.org/10.1210/jcem.86.1.7123.

    CAS  PubMed  Google Scholar 

  49. Polidori DC, Bergman RN, Chung ST, Sumner AE. Hepatic and extrahepatic insulin clearance are differentially regulated: results from a novel model-based analysis of intravenous glucose tolerance data. Diabetes. 2016;65(6):1556–64. https://doi.org/10.2337/db15-1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metab. 2009;94(1):157–63. https://doi.org/10.1210/jc.2008-1492.

    Article  CAS  PubMed  Google Scholar 

  51. Ciaraldi TP, el-Roeiy A, Madar Z, Reichart D, Olefsky JM, yen SS. Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J Clin Endocrinol Metab. 1992;75(2):577–83. https://doi.org/10.1210/jcem.75.2.1322430.

    CAS  PubMed  Google Scholar 

  52. Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96(2):801–10. https://doi.org/10.1172/jci118126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab. 2001;281(2):E392–9.

    CAS  PubMed  Google Scholar 

  54. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806. https://doi.org/10.1038/414799a.

    Article  CAS  PubMed  Google Scholar 

  55. Flier JS, Moller DE, Moses AC, O'Rahilly S, Chaiken RL, Grigorescu F, et al. Insulin-mediated pseudoacromegaly: clinical and biochemical characterization of a syndrome of selective insulin resistance. J Clin Endocrinol Metab. 1993;76(6):1533–41. https://doi.org/10.1210/jcem.76.6.8388881.

    CAS  PubMed  Google Scholar 

  56. Book CB, Dunaif A. Selective insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1999;84(9):3110–6. https://doi.org/10.1210/jcem.84.9.6010.

    CAS  PubMed  Google Scholar 

  57. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20(2):373–81. https://doi.org/10.1093/humrep/deh609.

    Article  CAS  PubMed  Google Scholar 

  58. Ek I, Arner P, Bergqvist A, Carlstrom K, Wahrenberg H. Impaired adipocyte lipolysis in nonobese women with the polycystic ovary syndrome: a possible link to insulin resistance? J Clin Endocrinol Metab. 1997;82(4):1147–53. https://doi.org/10.1210/jcem.82.4.3899.

    CAS  PubMed  Google Scholar 

  59. Ek I, Arner P, Ryden M, Holm C, Thorne A, Hoffstedt J, et al. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes. 2002;51(2):484–92.

    Article  CAS  PubMed  Google Scholar 

  60. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84(1):165–9. https://doi.org/10.1210/jcem.84.1.5393.

    CAS  PubMed  Google Scholar 

  61. Balen AH, Conway GS, Kaltsas G, Techatrasak K, Manning PJ, West C, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod. 1995;10(8):2107–11.

    Article  CAS  PubMed  Google Scholar 

  62. Yildiz BO, Knochenhauer ES, Azziz R. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(1):162–8. https://doi.org/10.1210/jc.2007-1834.

    Article  CAS  PubMed  Google Scholar 

  63. Azziz R. Reproductive endocrinologic alterations in female asymptomatic obesity. Fertil Steril. 1989;52(5):703–25.

    Article  CAS  PubMed  Google Scholar 

  64. Georgopoulos NA, Saltamavros AD, Vervita V, Karkoulias K, Adonakis G, Decavalas G, et al. Basal metabolic rate is decreased in women with polycystic ovary syndrome and biochemical hyperandrogenemia and is associated with insulin resistance. Fertil Steril. 2009;92(1):250–5. https://doi.org/10.1016/j.fertnstert.2008.04.067.

    Article  CAS  PubMed  Google Scholar 

  65. Segal KR, Dunaif A. Resting metabolic rate and postprandial thermogenesis in polycystic ovarian syndrome. Int J Obes. 1990;14(7):559–67.

    CAS  PubMed  Google Scholar 

  66. Churchill SJ, Wang, Bhasin G, Alexander C, Bresee C, Pall M, et al. Basal metabolic rate in women with PCOS compared to eumenorrheic controls. Clin Endocrinol. 2015;83(3):384–8. https://doi.org/10.1111/cen.12740.

  67. Arusoglu G, Koksal G, Cinar N, Tapan S, Aksoy DY, Yildiz BO. Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive. J Clin Endocrinol Metab. 2013;98(11):4475–82. https://doi.org/10.1210/jc.2013-1526.

    Article  CAS  PubMed  Google Scholar 

  68. Moran LJ, Noakes M, Clifton PM, Wittert GA, Le Roux CW, Ghatei MA, et al. Postprandial ghrelin, cholecystokinin, peptide YY, and appetite before and after weight loss in overweight women with and without polycystic ovary syndrome. Am J Clin Nutr. 2007;86(6):1603–10.

    CAS  PubMed  Google Scholar 

  69. Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab. 2015;26(3):136–43. https://doi.org/10.1016/j.tem.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  70. Escobar-Morreale HF, San Millan JL. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. 2007;18(7):266–72. https://doi.org/10.1016/j.tem.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  71. Barber TM, Golding SJ, Alvey C, Wass JA, Karpe F, Franks S, et al. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):999–1004. https://doi.org/10.1210/jc.2007-2117.

    Article  CAS  PubMed  Google Scholar 

  72. Manneras-Holm L, Leonhardt H, Kullberg J, Jennische E, Oden A, Holm G, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96(2):E304–11. https://doi.org/10.1210/jc.2010-1290.

    Article  CAS  PubMed  Google Scholar 

  73. Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millan JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2005;90(12):6364–9. https://doi.org/10.1210/jc.2005-1490.

    Article  CAS  PubMed  Google Scholar 

  74. Skubleny D, Switzer NJ, Gill RS, Dykstra M, Shi X, Sagle MA, et al. The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Surg. 2016;26(1):169–76. https://doi.org/10.1007/s11695-015-1902-5.

    Article  PubMed  Google Scholar 

  75. Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D, et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab. 2000;85(8):2767–74. https://doi.org/10.1210/jcem.85.8.6738.

    Article  CAS  PubMed  Google Scholar 

  76. •• Legro RS, Dodson WC, Kris-Etherton PM, Kunselman AR, Stetter CM, Williams NI, et al. Randomized controlled trial of preconception interventions in infertile women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100(11):4048–58. https://doi.org/10.1210/jc.2015-2778. This RCT provides compelling evidence for the effectiveness of lifestyle modifications in improving ovulation rates in subfertile women with PCOS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A. Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab. 1987;65(3):499–507. https://doi.org/10.1210/jcem-65-3-499.

    Article  CAS  PubMed  Google Scholar 

  78. Solomon CG, Hu FB, Dunaif A, Rich-Edwards J, Willett WC, Hunter DJ, et al. Long or highly irregular menstrual cycles as a marker for risk of type 2 diabetes mellitus. JAMA. 2001;286(19):2421–6.

    Article  CAS  PubMed  Google Scholar 

  79. Ehrmann DA, Kasza K, Azziz R, Legro RS, Ghazzi MN. Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(1):66–71. https://doi.org/10.1210/jc.2004-0229.

    Article  CAS  PubMed  Google Scholar 

  80. Velling Magnussen L, Mumm H, Andersen M, Glintborg D. Hemoglobin A1c as a tool for the diagnosis of type 2 diabetes in 208 premenopausal women with polycystic ovary syndrome. Fertil Steril. 2011;96(5):1275–80. https://doi.org/10.1016/j.fertnstert.2011.08.035.

    Article  CAS  PubMed  Google Scholar 

  81. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–92. https://doi.org/10.1210/jc.2013-2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab. 2010;95(5):2038–49. https://doi.org/10.1210/jc.2009-2724.

    Article  CAS  PubMed  Google Scholar 

  83. Legro RS, Gnatuk CL, Kunselman AR, Dunaif A. Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab. 2005;90(6):3236–42. https://doi.org/10.1210/jc.2004-1843.

    Article  CAS  PubMed  Google Scholar 

  84. Norman RJ, Masters L, Milner CR, Wang JX, Davies MJ. Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum Reprod. 2001;16(9):1995–8.

    Article  CAS  PubMed  Google Scholar 

  85. Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, et al. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54(4):1150–6.

    Article  PubMed  Google Scholar 

  86. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50. https://doi.org/10.1056/nejm200105033441801.

    Article  CAS  PubMed  Google Scholar 

  87. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  88. Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med. 1998;338(26):1876–80. https://doi.org/10.1056/nejm199806253382603.

    Article  CAS  PubMed  Google Scholar 

  89. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/circulationaha.109.192644.

    Article  CAS  PubMed  Google Scholar 

  90. Ehrmann DA, Liljenquist DR, Kasza K, Azziz R, Legro RS, Ghazzi MN. Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(1):48–53. https://doi.org/10.1210/jc.2005-1329.

    Article  CAS  PubMed  Google Scholar 

  91. Valkenburg O, Steegers-Theunissen RP, Smedts HP, Dallinga-Thie GM, Fauser BC, Westerveld EH, et al. A more atherogenic serum lipoprotein profile is present in women with polycystic ovary syndrome: a case-control study. J Clin Endocrinol Metab. 2008;93(2):470–6. https://doi.org/10.1210/jc.2007-1756.

    Article  CAS  PubMed  Google Scholar 

  92. Wild RA, Painter PC, Coulson PB, Carruth KB, Ranney GB. Lipoprotein lipid concentrations and cardiovascular risk in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1985;61(5):946–51. https://doi.org/10.1210/jcem-61-5-946.

    Article  CAS  PubMed  Google Scholar 

  93. Carmina E, Napoli N, Longo RA, Rini GB, Lobo RA. Metabolic syndrome in polycystic ovary syndrome (PCOS): lower prevalence in southern Italy than in the USA and the influence of criteria for the diagnosis of PCOS. Eur J Endocrinol. 2006;154(1):141–5. https://doi.org/10.1530/eje.1.02058.

    Article  CAS  PubMed  Google Scholar 

  94. Taponen S, Martikainen H, Jarvelin MR, Sovio U, Laitinen J, Pouta A, et al. Metabolic cardiovascular disease risk factors in women with self-reported symptoms of oligomenorrhea and/or hirsutism: northern Finland birth cohort 1966 study. J Clin Endocrinol Metab. 2004;89(5):2114–8. https://doi.org/10.1210/jc.2003-031720.

    Article  CAS  PubMed  Google Scholar 

  95. Legro RS, Kunselman AR, Dunaif A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am J Med. 2001;111(8):607–13.

    Article  CAS  PubMed  Google Scholar 

  96. Legro RS, Azziz R, Ehrmann D, Fereshetian AG, O'Keefe M, Ghazzi MN. Minimal response of circulating lipids in women with polycystic ovary syndrome to improvement in insulin sensitivity with troglitazone. J Clin Endocrinol Metab. 2003;88(11):5137–44. https://doi.org/10.1210/jc.2003-030044.

    Article  CAS  PubMed  Google Scholar 

  97. Diamanti-Kandarakis E, Mitrakou A, Raptis S, Tolis G, Duleba AJ. The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1998;83(8):2699–705. https://doi.org/10.1210/jcem.83.8.5041.

    Article  CAS  PubMed  Google Scholar 

  98. Guzick DS, Talbott EO, Sutton-Tyrrell K, Herzog HC, Kuller LH, Wolfson SK Jr. Carotid atherosclerosis in women with polycystic ovary syndrome: initial results from a case-control study. Am J Obstet Gynecol. 1996;174(4):1224–9. discussion 9–32

    Article  CAS  PubMed  Google Scholar 

  99. Talbott EO, Guzick DS, Sutton-Tyrrell K, McHugh-Pemu KP, Zborowski JV, Remsberg KE, et al. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol. 2000;20(11):2414–21.

    Article  CAS  PubMed  Google Scholar 

  100. Kravariti M, Naka KK, Kalantaridou SN, Kazakos N, Katsouras CS, Makrigiannakis A, et al. Predictors of endothelial dysfunction in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(9):5088–95. https://doi.org/10.1210/jc.2005-0151.

    Article  CAS  PubMed  Google Scholar 

  101. Paradisi G, Steinberg HO, Hempfling A, Cronin J, Hook G, Shepard MK, et al. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation. 2001;103(10):1410–5.

    Article  CAS  PubMed  Google Scholar 

  102. Folsom AR, Kronmal RA, Detrano RC, O'Leary DH, Bild DE, Bluemke DA, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9. https://doi.org/10.1001/archinte.168.12.1333.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Christian RC, Dumesic DA, Behrenbeck T, Oberg AL, Sheedy PF 2nd, Fitzpatrick LA. Prevalence and predictors of coronary artery calcification in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(6):2562–8. https://doi.org/10.1210/jc.2003-030334.

    Article  CAS  PubMed  Google Scholar 

  104. Talbott EO, Zborowski JV, Rager JR, Boudreaux MY, Edmundowicz DA, Guzick DS. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(11):5454–61. https://doi.org/10.1210/jc.2003-032237.

    Article  CAS  PubMed  Google Scholar 

  105. Chang AY, Ayers C, Minhajuddin A, Jain T, Nurenberg P, de Lemos JA, et al. Polycystic ovarian syndrome and subclinical atherosclerosis among women of reproductive age in the Dallas heart study. Clin Endocrinol. 2011;74(1):89–96. https://doi.org/10.1111/j.1365-2265.2010.03907.x.

    Article  CAS  Google Scholar 

  106. • Calderon-Margalit R, Siscovick D, Merkin SS, Wang E, Daviglus ML, Schreiner PJ, et al. Prospective association of polycystic ovary syndrome with coronary artery calcification and carotid-intima-media thickness: the Coronary Artery Risk Development in Young Adults Women’s study. Arterioscler Thromb Vasc Biol. 2014;34(12):2688–94. https://doi.org/10.1161/ATVBAHA.114.304136. This epidemiologic study reports increased risk for subclinical cardiovascular disease in women with both hyperandrogenemia and oligomenorrhea, who likely fulfill NIH criteria for PCOS.

    Article  CAS  PubMed  Google Scholar 

  107. Wild S, Pierpoint T, McKeigue P, Jacobs H. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin Endocrinol. 2000;52(5):595–600.

    Article  CAS  Google Scholar 

  108. Solomon CG, Hu FB, Dunaif A, Rich-Edwards JE, Stampfer MJ, Willett WC, et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab. 2002;87(5):2013–7. https://doi.org/10.1210/jcem.87.5.8471.

    Article  CAS  PubMed  Google Scholar 

  109. Polotsky AJ, Allshouse AA, Crawford SL, Harlow SD, Khalil N, Kazlauskaite R, et al. Hyperandrogenic oligomenorrhea and metabolic risks across menopausal transition. J Clin Endocrinol Metab. 2014;99(6):2120–7. https://doi.org/10.1210/jc.2013-4170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Talbott E, Clerici A, Berga SL, Kuller L, Guzick D, Detre K, et al. Adverse lipid and coronary heart disease risk profiles in young women with polycystic ovary syndrome: results of a case-control study. J Clin Epidemiol. 1998;51(5):415–22.

    Article  CAS  PubMed  Google Scholar 

  111. Fogel RB, Malhotra A, Pillar G, Pittman SD, Dunaif A, White DP. Increased prevalence of obstructive sleep apnea syndrome in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86(3):1175–80. https://doi.org/10.1210/jcem.86.3.7316.

    CAS  PubMed  Google Scholar 

  112. Vgontzas AN, Legro RS, Bixler EO, Grayev A, Kales A, Chrousos GP. Polycystic ovary syndrome is associated with obstructive sleep apnea and daytime sleepiness: role of insulin resistance. J Clin Endocrinol Metab. 2001;86(2):517–20. https://doi.org/10.1210/jcem.86.2.7185.

    CAS  PubMed  Google Scholar 

  113. Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med. 2013;1(4):329–38. https://doi.org/10.1016/S2213-2600(13)70039-0.

    Article  PubMed  Google Scholar 

  114. Tasali E, Van Cauter E, Hoffman L, Ehrmann DA. Impact of obstructive sleep apnea on insulin resistance and glucose tolerance in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(10):3878–84. https://doi.org/10.1210/jc.2008-0925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tasali E, Chapotot F, Leproult R, Whitmore H, Ehrmann DA. Treatment of obstructive sleep apnea improves cardiometabolic function in young obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(2):365–74. https://doi.org/10.1210/jc.2010-1187.

    Article  CAS  PubMed  Google Scholar 

  116. Gutierrez-Grobe Y, Ponciano-Rodriguez G, Ramos MH, Uribe M, Mendez-Sanchez N. Prevalence of non alcoholic fatty liver disease in premenopausal, posmenopausal and polycystic ovary syndrome women. The role of estrogens. Ann Hepatol. 2010;9(4):402–9.

    PubMed  Google Scholar 

  117. Jones H, Sprung VS, Pugh CJ, Daousi C, Irwin A, Aziz N, et al. Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J Clin Endocrinol Metab. 2012;97(10):3709–16. https://doi.org/10.1210/jc.2012-1382.

    Article  CAS  PubMed  Google Scholar 

  118. Setji TL, Holland ND, Sanders LL, Pereira KC, Diehl AM, Brown AJ. Nonalcoholic steatohepatitis and nonalcoholic fatty liver disease in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(5):1741–7. https://doi.org/10.1210/jc.2005-2774.

    Article  CAS  PubMed  Google Scholar 

  119. Sarkar M, Wellons M, Cedars MI, VanWagner L, Gunderson EP, Ajmera V, et al. Testosterone levels in pre-menopausal women are associated with nonalcoholic fatty liver disease in midlife. Am J Gastroenterol. 2017;112(5):755–62. https://doi.org/10.1038/ajg.2017.44.

    Article  CAS  PubMed  Google Scholar 

  120. Tan S, Bechmann LP, Benson S, Dietz T, Eichner S, Hahn S, et al. Apoptotic markers indicate nonalcoholic steatohepatitis in polycystic ovary syndrome. J Clin Endocrinol Metab. 2010;95(1):343–8. https://doi.org/10.1210/jc.2009-1834.

    Article  CAS  PubMed  Google Scholar 

  121. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91(6):2100–4. https://doi.org/10.1210/jc.2005-1494.

    Article  CAS  PubMed  Google Scholar 

  122. Coviello AD, Sam S, Legro RS, Dunaif A. High prevalence of metabolic syndrome in first-degree male relatives of women with polycystic ovary syndrome is related to high rates of obesity. J Clin Endocrinol Metab. 2009;94(11):4361–6. https://doi.org/10.1210/jc.2009-1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sam S, Coviello AD, Sung YA, Legro RS, Dunaif A. Metabolic phenotype in the brothers of women with polycystic ovary syndrome. Diabetes Care. 2008;31(6):1237–41. https://doi.org/10.2337/dc07-2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sam S, Legro RS, Essah PA, Apridonidze T, Dunaif A. Evidence for metabolic and reproductive phenotypes in mothers of women with polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2006;103(18):7030–5. https://doi.org/10.1073/pnas.0602025103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taylor MC, Reema Kar A, Kunselman AR, Stetter CM, Dunaif A, Legro RS. Evidence for increased cardiovascular events in the fathers but not mothers of women with polycystic ovary syndrome. Hum Reprod. 2011;26(8):2226–31. https://doi.org/10.1093/humrep/der101.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Torchen LC, Idkowiak J, Fogel NR, O'Neil DM, Shackleton CH, Arlt W, et al. Evidence for increased 5alpha-reductase activity during early childhood in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2016;101(5):2069–75. https://doi.org/10.1210/jc.2015-3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.

    Article  CAS  PubMed  Google Scholar 

  128. •• Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015;6:7502. https://doi.org/10.1038/ncomms8502. This recent genome-wide association study identified both replicated and novel genetic susceptibility loci significantly associated with PCOS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ. 2012;345:e7325. https://doi.org/10.1136/bmj.e7325.

    Article  PubMed  Google Scholar 

  130. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361(12):1152–63. https://doi.org/10.1056/NEJMoa0804381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Torchen.

Ethics declarations

Conflict of Interest

Laura C. Torchen declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any original studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torchen, L.C. Cardiometabolic Risk in PCOS: More than a Reproductive Disorder. Curr Diab Rep 17, 137 (2017). https://doi.org/10.1007/s11892-017-0956-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0956-2

Keywords

Navigation