Health Benefits of Fasting and Caloric Restriction

Abstract

Purpose of Review

Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes.

Recent Findings

Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition.

Summary

There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Badran M, Laher I. Obesity in arabic-speaking countries. J Obes. 2011;2011:686430. https://doi.org/10.1155/2011/686430.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Badran M, Laher I. Type II diabetes mellitus in Arabic-speaking countries. Int J Endocrinol. 2012;2012:902873. https://doi.org/10.1155/2012/902873.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    • Abuyassin B, Laher I. Diabetes epidemic sweeping the Arab world. World J Diabetes. 2016;7:165–74. https://doi.org/10.4239/wjd.v7.i8.165. This review article gives an overview of epidemiologic aspects of diabetes, particularly in respect to unhealthy lifestyle, in the Middle East.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Abuyassin B, Laher I. Obesity-linked diabetes in the Arab world: a review. East Mediterr Health J. 2015;21:42039.

    Article  Google Scholar 

  5. 5.

    Trepanowski JF, Bloomer RJ. The impact of religious fasting on human health. Nutr J. 2010;9:57. https://doi.org/10.1186/1475-2891-9-57.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Persynaki A, Karras S, Pichard C. Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review. Nutrition. 2017;35:14–20. https://doi.org/10.1016/j.nut.2016.10.005.

    PubMed  Article  Google Scholar 

  7. 7.

    el Ati J, Beji C, Danguir J. Increased fat oxidation during Ramadan fasting in healthy women: an adaptative mechanism for body-weight maintenance. Am J Clin Nutr. 1995;62:302–7.

    PubMed  Google Scholar 

  8. 8.

    Al Suwaidi J, Bener A, Hajar HA, Numan MT. Does hospitalization for congestive heart failure occur more frequently in Ramadan: a population-based study [1991-2001]. Int J Cardiol. 2004;96:217–21.

    PubMed  Article  Google Scholar 

  9. 9.

    Al Suwaidi J, Bener A, Suliman A, Hajar R, Salam AM, Numan MT, Al Binali HA. Al Suwaidi J, Bener A, Suliman A, Hajar R, Salam AM, Numan MT, Al Binali HA. A population based study of Ramadan fasting and acute coronary syndromes. Heart. 2004; 90: 695–696.

  10. 10.

    Al Suwaidi J, Bener A, Gehani AA, Behair S, Al Mohanadi D, Salam A, et al. Does the circadian pattern for acute cardiac events presentation vary with fasting? J Postgrad Med. 2006;52:30–3.

    PubMed  Google Scholar 

  11. 11.

    Bahijri S, Borai A, Ajabnoor G, Abdul Khaliq A, AlQassas I, Al-Shehri D, et al. Relative metabolic stability, but disrupted circadian cortisol secretion during the fasting month of Ramadan. PLoS One. 2013;8:e60917. https://doi.org/10.1371/journal.pone.0060917.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Charmandari ETC, Chrousos GP. Neuroendocrinology of stress. Annu Rev Physiol. 2005;67:259–84.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Pervanidou P, Chrousos GP. Metabolic consequences of stress during childhood and adolescence. Metabolism. 2012;61:611–9. https://doi.org/10.1016/j.metabol.2011.10.005.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Maislos M, Abou-Rabiah Y, Zuili I, Iordash S, Shany S. Gorging and plasma HDL-cholesterol—the Ramadan model. Eur J Clin Nutr. 1998;52:127–30.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Koh HK, Joossens LX, Connolly GN. Making smoking history worldwide. N Engl J Med. 2007;356:1496–8.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ramahi I, Seidenberg AB, Kennedy RD, Rees VW. Secondhand smoke emission levels in enclosed public places during Ramadan. Eur J Public Health 2013; 789–91. doi: https://doi.org/10.1093/eurpub/cks119.

  17. 17.

    Thomas JA 2nd, Antonelli JA, Lloyd JC, Masko EM, Poulton SH, Phillips TE, et al. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model. Prostate Cancer Prostatic Dis. 2010;13:350–5. https://doi.org/10.1038/pcan.2010.24.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    PubMed  Article  Google Scholar 

  19. 19.

    Buschemeyer WC 3rd, Klink JC, Mavropoulos JC, Poulton SH, Demark-Wahnefried W, Hursting SD, et al. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice. Prostate. 2010;70:1037–43. https://doi.org/10.1002/pros.21136.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ikeno Y, Lew CM, Cortez LA, Webb CR, Lee S, Hubbard GB. Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms? A pathological point of view. Age (Dordr). 2006;28:163–71. https://doi.org/10.1007/s11357-006-9007-7.

    CAS  Article  Google Scholar 

  21. 21.

    Maeda H, Gleiser CA, Masoro EJ, Murata I, McMahan CA, Yu BP. Nutritional influences on aging of Fischer 344 rats: II. Pathol J Gerontol. 1985;40:671–88.

    CAS  Article  Google Scholar 

  22. 22.

    Cava E, Fontana L. Will calorie restriction work in humans? Aging (Albany NY). 2013;5:507–14.

    Article  Google Scholar 

  23. 23.

    Mercken EM, Crosby SD, Lamming DW, JeBailey L, Krzysik-Walker S, Villareal DT, et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12:645–51. https://doi.org/10.1111/acel.12088.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295:1539–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328 https://doi.org/10.1126/science.

  26. 26.

    Mattson MP. Challenging oneself intermittently to improve health. Dose Response. 2014;12:600–18. https://doi.org/10.2203/dose-response.14-028.Mattson. eCollection 2014

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Adrie C, Richter C, Bachelet M, Banzet N, François D, Dinh-Xuan AT, et al. Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes. Am J Physiol Cell Physiol. 2000;279:C452–60.

    CAS  PubMed  Google Scholar 

  28. 28.

    Guttman SD, Glover CV, Allis CD, Gorovsky MA. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell. 1980;22:299–307.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–5.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Sciandra JJ, Subjeck JR. The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem. 1983;258:12091–3.

    CAS  PubMed  Google Scholar 

  31. 31.

    Morton JP, Kayani AC, McArdle A, Drust B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 2009;39:643–62. https://doi.org/10.2165/00007256-200939080-00003.

    PubMed  Article  Google Scholar 

  32. 32.

    Geiger PC, Gupte AA. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exerc Sport Sci Rev. 2011;39:34–42. https://doi.org/10.1097/JES.0b013e318201f236.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, et al. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes. 2002;51:1102–9.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009;10:85–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Bijur GN, Jope RS. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem. 2000;75:2401–8.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, et al. HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2008;105:1739–44. https://doi.org/10.1073/pnas.0705799105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Speakman JR, Mitchell SE. Caloric restriction. Mol Asp Med. 2011;32:159–221. https://doi.org/10.1016/j.mam.2011.07.001.

    CAS  Article  Google Scholar 

  38. 38.

    Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67:41–52. https://doi.org/10.1002/ana.21798.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010;1:e10. https://doi.org/10.1038/cddis.2009.8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110:911–916. e12. https://doi.org/10.1016/j.jada.2010.03.018.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products [glycotoxins] : an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol. 2008;153:6–20.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170:1893–902.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Stern D, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation end-products: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev. 2002;54:1615–25.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP. Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci. 2005;1043:676–80.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 1997;272:16498–506.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009;20:742–52. https://doi.org/10.1681/ASN.2008050514.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:E685–94.

    CAS  PubMed  Google Scholar 

  50. 50.

    Gugliucci A, Kotani K, Taing J, Matsuoka Y, Sano Y, Yoshimura M, et al. Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann Nutr Metab. 2009;54:197–201. https://doi.org/10.1159/000217817.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Iwashige K, Kouda K, Kouda M, Horiuchi K, Takahashi M, Nagano A, et al. Calorie restricted diet and urinary pentosidine in patients with rheumatoid arthritis. J Physiol Anthropol Appl Hum Sci. 2004;23:19–24.

    Article  Google Scholar 

  52. 52.

    Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes. 2003;52:268–76.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Wan R, Ahmet I, Brown M, Cheng A, Kamimura N, Talan M, et al. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem. 2010;21:413–7. https://doi.org/10.1016/j.jnutbio.2009.01.020.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Mazaki-Tovi S, Kanety H, Sivan E. Adiponectin and human pregnancy. Curr Diab Rep. 2005;5:278–81.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Okamoto M, Ohara-Imaizumi M, Kubota N, Hashimoto S, Eto K, Kanno T, et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia. 2008;51:827–35. https://doi.org/10.1007/s00125-008-0944-9.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Musso G, Gambino R, Biroli G, Carello M, Fagà E, Pacini G, et al. Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic Beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2005;100:2438–46.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Retnakaran R, Hanley AJ, Raif N, Hirning CR, Connelly PW, Sermer M, et al. Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications. Diabetologia. 2005;48:993–1001.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Cui J, Panse S, Falkner B. The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol. 2011;75:26–33.

    CAS  PubMed  Google Scholar 

  59. 59.

    Bik W, Baranowska-Bik A, Wolinska-Witort E, Martynska L, Chmielowska M, Szybinska A, et al. The relationship between adiponectin levels and metabolic status in centenarian, early elderly, young and obese women. Neuro Endocrinol Lett. 2006;27:493–500.

    CAS  PubMed  Google Scholar 

  60. 60.

    Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, et al. Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci. 2008;63:447–53.

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Klöting N, Blüher M. Extended longevity and insulin signaling in adipose tissue. Exp Gerontol. 2005;40:878–83.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009;44:26–33. https://doi.org/10.1016/j.exger.2008.05.014.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci. 2006;61:323–31.

    PubMed  Article  Google Scholar 

  64. 64.

    Qiao L, Lee B, Kinney B, Yoo HS, Shao J. Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab. 2011;300:E809–16. https://doi.org/10.1152/ajpendo.00004.2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Nakamura T, Funayama H, Kubo N, Yasu T, Kawakami M, Saito M, et al. Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure. Circ J. 2006;70:1557–62.

    PubMed  Article  Google Scholar 

  66. 66.

    Nelson DL, Cox MM. Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman and Company; 2013.

    Google Scholar 

  67. 67.

    Voet D, Voet JG. Biochemistry. 4th ed. Chichester: Wiley; 2011.

    Google Scholar 

  68. 68.

    Weyer C, Foley EJ, Bogardus C, Tataranni AP, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43:1498–506.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Varady KA, Hellerstein MK. Do calorie restriction or alternate-day fasting regimens modulate adipose tissue physiology in a way that reduces chronic disease risk? Nutr Rev. 2008;66:333–42.

    PubMed  Article  Google Scholar 

  70. 70.

    Varady KA, Roohk DJ, Loe YC, McEvoy-Hein BK, Hellerstein MK. Effects of modified alternate-day fasting regimens on adipocyte size, triglyceride metabolism and plasma adiponectin levels in mice. J Lipid Res. 2007;48:2212–9.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Tzur R, Rose-Kahn G, Adler HJ, Bar-Tana J. Hypolipidemic, antiobesity, and hypoglycemic-hypoinsulinemic effects of beta,beta’-methyl-substituted hexadecanedioic acid in sand rats. Diabetes. 1988;37:1618–24.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Varady AK, Hellerstein KM. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86:7–13.

    CAS  PubMed  Google Scholar 

  73. 73.

    Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–27.

    CAS  Article  Google Scholar 

  74. 74.

    •• Ding H, Zheng S, Garcia-Ruiz D, Hou D, Wei Z, Liao Z, et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun. 2016; https://doi.org/10.1038/ncomms11533. This study provides a novel view of adipose tissue metabolism during fasting and the importance of subcutaneous fat in energy balance.

  75. 75.

    • Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Stevanovic Dokic A, Colin DJ, et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 2016;24:434–46. https://doi.org/10.1016/j.cmet.2016.07.023. An investigation of the metabolism of adipose tissue and its potential for transformation during periods of energy restriction

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195–213.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010;39:349–57.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Otasevic V, Korac A, Buzadzic B, Stančić A, Janković A. Korać B. Nitric oxide and thermogenesis-challenge in molecular cell physiology. Front Biosci 2011; 3: 1180–1195.

  79. 79.

    Stanford IK, Middelbeek JWR, Goodyear JL. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes. 2015; https://doi.org/10.2337/db15-0227.

  80. 80.

    Romaniello, J: IF 201: a look at four popular intermittent fasting protocols. A breakdown of the most popular IF variations. URL romanfitnesssystems.com/articles/intermittent-fasting-201/.

  81. 81.

    Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014;164:302–11. https://doi.org/10.1016/j.trsl.2014.05.013.

    PubMed  Article  Google Scholar 

  82. 82.

    Varady KA. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 2011;12:e593–601. https://doi.org/10.1111/j.1467-789X.2011.00873.x.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–4. https://doi.org/10.1126/science.1173635.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18:1657–69.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013;12:1–4.

    Article  CAS  Google Scholar 

  88. 88.

    Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J. 2012;11:98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Varady KA, Bhutani S, Church EC, Klempel MC. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90:1138–43.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Klempel MC, Kroeger CM, Varady KA. Alternate day fasting [ADF] with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62:137–43.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Heilbronn LK, Smith SR, Martin CK, Anton SD, Ravussin E. Alternate-day fasting in non-obese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81:69–73.

    CAS  PubMed  Google Scholar 

  92. 92.

    M'guil M, Ragala MA, El Guessabi L, Fellat S, Chraibi A, Chabraoui L, et al. Is Ramadan fasting safe in type 2 diabetic patients in view of the lack of significant effect of fasting on clinical and biochemical parameters, blood pressure, and glycemic control ? Clin Exp Hypertens. 2008;30:339–57. https://doi.org/10.1080/10641960802272442.

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Deng X, Cheng J, Zhang Y, Li N, Chen L. Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats. Acta Diabetol. 2010;47(suppl 1):177–85. https://doi.org/10.1007/s00592-009-0159-7.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–67.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. 2008;3:e1759. https://doi.org/10.1371/journal.pone.0001759.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. CALERIE Pennington team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Golbidi S, Badran M, Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. 2012;2012:941868. https://doi.org/10.1155/2012/941868.

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Krumholz HM, Currie PM, Riegel B, Phillips CO, Peterson ED, Smith R, et al. A taxonomy for disease management: a scientific statement from the American Heart Association disease management taxonomy writing group. Circulation. 2006;114:1432–45.

    PubMed  Article  Google Scholar 

  100. 100.

    Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89:27–71. https://doi.org/10.1152/physrev.00014.2008.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Yung LM, Leung FP, Yao X, Chen ZY, Huang Y. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets. 2006;6:1–19.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Meydani M, Das S, Band M, Epstein S, Roberts S. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the CALERIE trial of human caloric restriction. J Nutr Health Aging. 2011;15:456–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Buchowski MS, Hongu N, Acra S, Wang L, Warolin J, Roberts LJ 2nd. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS One. 2012;7:e47079. https://doi.org/10.1371/journal.pone.0047079.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Sung MM, Dyck JR. Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev. 2012;17:707–19. https://doi.org/10.1007/s10741-011-9293-8.

    PubMed  Article  Google Scholar 

  105. 105.

    Han X, Ren J. Caloric restriction and heart function: is there a sensible link? Acta Pharma. 2010;31:1111–7.

    CAS  Article  Google Scholar 

  106. 106.

    Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2007;104:14855–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Seymour EM, Parikh RV, Singer AA, Bolling SF. Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol. 2006;41:661–8.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Zotova AV, Desyatova IE, Bychenko SM, Sivertseva SA, Okonechnikova NS, Murav'ev SA. The efficacy of low calorie diet therapy in patients with arterial hypertension and chronic cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115:25–8.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide [NO] and its pathophysiologic regulation. Vasc Pharmacol. 2008;49:134–40.

    CAS  Article  Google Scholar 

  110. 110.

    Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases—the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20:3579–94.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129–37.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301:H1205–19. https://doi.org/10.1152/ajpheart.00685.2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015;102:464–70. https://doi.org/10.3945/ajcn.115.109553.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ismail Laher.

Ethics declarations

Conflict of Interest

Saeid Golbidi, Andreas Daiber, Bato Korac, Huige Li, M. Faadiel Essop, and Ismail Laher declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golbidi, S., Daiber, A., Korac, B. et al. Health Benefits of Fasting and Caloric Restriction. Curr Diab Rep 17, 123 (2017). https://doi.org/10.1007/s11892-017-0951-7

Download citation

Keywords

  • Calorie restriction
  • Diabetes
  • Adipose tissue
  • Oxidative stress