Skip to main content

Advertisement

Log in

Progress in Defining the Genetic Basis of Diabetic Complications

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetic complications affecting the kidneys, retina, nerves, and the cardiovasculature are the major causes of morbidity and mortality in diabetes. This paper aims to review the current understanding of the genetic basis of these complications, based on recent findings especially from genome-wide association studies.

Recent Findings

Variants in or near AFF3, RGMA-MCTP2, SP3-CDCA7, GLRA3, CNKSR3, and UMOD have reached genome-wide significance (p value <5 × 10−8) for association with diabetic kidney disease, and recently, GRB2 was reported to be associated at genome-wide significance with diabetic retinopathy. While some loci affecting cardiovascular disease in the general population have been replicated in diabetes, GLUL affects the risk of cardiovascular disease specifically in diabetic subjects.

Summary

Genetic findings are emerging for diabetic complications, although the studies remain relatively small compared to those for type 1 and type 2 diabetes. In addition to pinpointing specific loci, the studies also reveal biological information on correlated traits and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    Article  CAS  PubMed  Google Scholar 

  2. Groop PH, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58(7):1651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  5. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes. 2006;55(5):1463–9.

    Article  CAS  PubMed  Google Scholar 

  6. Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33(7):1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harjutsalo V, Maric C, Forsblom C, Thorn L, Waden J, Groop PH, et al. Sex-related differences in the long-term risk of microvascular complications by age at onset of type 1 diabetes. Diabetologia. 2011;54(8):1992–9.

    Article  CAS  PubMed  Google Scholar 

  8. The DCCT/EDIC Research Group, Nathan DM, Zinman B, Cleary PA, Backlund JY, Genuth S, et al. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2005). Arch Intern Med. 2009;169(14):1307–16.

    Article  Google Scholar 

  9. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. N Engl J Med. 1989;320(18):1161–5.

    Article  CAS  PubMed  Google Scholar 

  10. Borch-Johnsen K, Norgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, et al. Is diabetic nephropathy an inherited complication. Kidney Int. 1992;41(4):719–22.

    Article  CAS  PubMed  Google Scholar 

  11. Harjutsalo V, Katoh S, Sarti C, Tajima N, Tuomilehto J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes. 2004;53(9):2449–54.

    Article  CAS  PubMed  Google Scholar 

  12. Forsblom CM, Kanninen T, Lehtovirta M, Saloranta C, Groop LC. Heritability of albumin excretion rate in families of patients with type II diabetes. Diabetologia. 1999;42(11):1359–66.

    Article  CAS  PubMed  Google Scholar 

  13. Langefeld CD, Beck SR, Bowden DW, Rich SS, Wagenknecht LE, Freedman BI. Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am J Kidney Dis. 2004;43(5):796–800.

    Article  PubMed  Google Scholar 

  14. •• Sandholm N, Forsblom C, Makinen VP, McKnight AJ, Osterholm AM, He B, et al. Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia. 2014;57(6):1143–53. The first GWAS on albuminuria as a continuous trait in T1D identified variants associated with albuminuria in Finnish subjects.

    Article  CAS  PubMed  Google Scholar 

  15. •• Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, et al. The genetic landscape of renal complications in type 1 diabetes. J Am Soc Nephrol. 2017;28(2):557–74. Heritability estimates, GWAS and WES on DKD in T1D, revealing also connections with related traits.

    Article  PubMed  Google Scholar 

  16. Mooyaart A, Valk EJJ, van Es L, Bruijn J, de Heer E, Freedman B, et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia. 2011;54(3):544–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, et al. Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin-Angiotensin-Aldosterone Syst. 2012;13(1):161–74.

    Article  CAS  PubMed  Google Scholar 

  18. Williams WW, Salem RM, McKnight AJ, Sandholm N, Forsblom C, Taylor A, et al. Association testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes. 2012;61(8):2187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan A, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44.

    Article  CAS  Google Scholar 

  20. Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54(4):1171–8.

    Article  CAS  PubMed  Google Scholar 

  21. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010;6(2):e1000842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pezzolesi MG, Skupien J, Mychaleckyj JC, Warram JH, Krolewski AS. Insights to the genetics of diabetic nephropathy through a genome-wide association study of the GoKinD collection. Semin Nephrol. 2010;30(2):126–40.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 2011;79(5):563–72.

    Article  PubMed  Google Scholar 

  25. Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8(9):e1002921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, Harjutsalo V, et al. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol. 2013;24(10):1537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sambo F, Malovini A, Sandholm N, Stavarachi M, Forsblom C, Makinen VP, et al. Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification. Diabetologia. 2014;57(8):1611–22.

    Article  CAS  PubMed  Google Scholar 

  28. Germain M, Pezzolesi MG, Sandholm N, McKnight AJ, Susztak K, Lajer M, et al. SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia. 2015;58(3):543–8.

    Article  CAS  PubMed  Google Scholar 

  29. •• Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genet. 2015;11(8):e1005352. The first trans-ethnic GWAS meta-analysis for DKD with genome-wide significant finding at SCAF8/CNKSR3 locus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Teumer A, Tin A, Sorice R, Gorski M, Yeo NC, Chu AY, et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes. 2016;65(3):803–17.

    Article  CAS  PubMed  Google Scholar 

  31. •• Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023. The largest GWAS meta-analysis on kidney disease in the general population, with evaluation of the identified loci in a subset of diabetic patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC, et al. Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes. 2009;58(11):2698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leak TS, Perlegas PS, Smith SG, Keene KL, Hicks PJ, Langefeld CD, et al. Variants in intron 13 of the ELMO1 gene are associated with diabetic nephropathy in African Americans. Ann Hum Genet. 2009;73(2):152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pezzolesi MG, Jeong J, Smiles AM, Skupien J, Mychaleckyj JC, Rich SS, et al. Family-based association analysis confirms the role of the chromosome 9q21.32 locus in the susceptibility of diabetic nephropathy. PLoS One. 2013;8(3):e60301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freedman BI, Langefeld CD, Lu L, Divers J, Comeau ME, Kopp JB, et al. Differential effects of MYH9 and APOL1 risk variants on FRMD3 association with diabetic ESRD in African Americans. PLoS Genet. 2011;7(6):e1002150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Veikkolainen V, Naillat F, Railo A, Chi L, Manninen A, Hohenstein P, et al. ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J Am Soc Nephrol. 2012;23(1):112–22.

    Article  CAS  PubMed  Google Scholar 

  38. Lee HW, Khan SQ, Khaliqdina S, Altintas MM, Grahammer F, Zhao JL, et al. Absence of miR-146a in podocytes increases risk of diabetic glomerulopathy via up-regulation of ErbB4 and notch-1. J Biol Chem. 2017;292(2):732–47.

    Article  CAS  PubMed  Google Scholar 

  39. Stoner M, Wang F, Wormke M, Nguyen T, Samudio I, Vyhlidal C, et al. Inhibition of vascular endothelial growth factor expression in HEC1A endometrial cancer cells through interactions of estrogen receptor alpha and Sp3 proteins. J Biol Chem. 2000;275(30):22769–79.

    Article  CAS  PubMed  Google Scholar 

  40. Soundararajan R, Ziera T, Koo E, Ling K, Wang J, Borden SA, et al. Scaffold protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J Biol Chem. 2012;287(39):33014–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol. 2007;27(2):195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Todd JN, Dahlstrom EH, Salem RM, Sandholm N, Forsblom C, FinnDiane Study Group, et al. Genetic evidence for a causal role of obesity in diabetic kidney disease. Diabetes. 2015;64(12):4238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feodoroff M, Harjutsalo V, Forsblom C, Thorn L, Waden J, Tolonen N, et al. Smoking and progression of diabetic nephropathy in patients with type 1 diabetes. Acta Diabetol. 2016;53(4):525–33.

  44. Bonomo JA, Guan M, Ng MC, Palmer ND, Hicks PJ, Keaton JM, et al. The ras responsive transcription factor RREB1 is a novel candidate gene for type 2 diabetes associated end-stage kidney disease. Hum Mol Genet. 2014;23(24):6441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. • Chen Z, Miao F, Paterson AD, Lachin JM, Zhang L, Schones DE, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A. 2016;113(21):E3002–11. The study provides evidence that DNA methylation contributes to the sustained improved outcomes after intensive diabetes treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet. 2010;3:33–8794-3-33.

    Google Scholar 

  47. • Agardh E, Lundstig A, Perfilyev A, Volkov P, Freiburghaus T, Lindholm E, et al. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med. 2015;13:182–015-0421-5. The first genome-wide analysis of DNA methylation in diabetic retinopathy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.

    PubMed  PubMed Central  Google Scholar 

  49. Mathur R, Bhaskaran K, Edwards E, Lee H, Chaturvedi N, Smeeth L, et al. Population trends in the 10-year incidence and prevalence of diabetic retinopathy in the UK: a cohort study in the Clinical Practice Research Datalink 2004-2014. BMJ Open. 2017;7(2):e014444–2016-014444.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roy MS, Klein R, O'Colmain BJ, Klein BE, Moss SE, Kempen JH. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch Ophthalmol. 2004;122(4):546–51.

    Article  PubMed  Google Scholar 

  51. Monti MC, Lonsdale JT, Montomoli C, Montross R, Schlag E, Greenberg DA. Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes. J Clin Endocrinol Metab. 2007;92(12):4650–5.

    Article  CAS  PubMed  Google Scholar 

  52. Hietala K, Forsblom C, Summanen P, Groop PH, FinnDiane Study Group. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57(8):2176–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hallman DM, Huber JC Jr, Gonzalez VH, Klein BE, Klein R, Hanis CL. Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care. 2005;28(5):1163–8.

    Article  PubMed  Google Scholar 

  54. Rema M, Saravanan G, Deepa R, Mohan V. Familial clustering of diabetic retinopathy in South Indian type 2 diabetic patients. Diabet Med. 2002;19(11):910–6.

    Article  CAS  PubMed  Google Scholar 

  55. The DCCT Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes. 1997;46(11):1829–39.

    Article  Google Scholar 

  56. Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49(9):3839–45.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo S, Shi C, Wang F, Wu Z. Association between the angiotensin-converting enzyme (ACE) genetic polymorphism and diabetic retinopathy—a meta-analysis comprising 10,168 subjects. Int J Environ Res Public Health. 2016;13(11):E1142.

    Article  PubMed  Google Scholar 

  58. Zhou M, Zhang P, Xu X, Sun X. The relationship between aldose reductase C106T polymorphism and diabetic retinopathy: an updated meta-analysis. Invest Ophthalmol Vis Sci. 2015;56(4):2279–89.

    Article  CAS  PubMed  Google Scholar 

  59. Xie XJ, Yang YM, Jiang JK, Lu YQ. Association between the vascular endothelial growth factor single nucleotide polymorphisms and diabetic retinopathy risk: a meta-analysis. J Diabetes. 2017;9(8):738–53.

  60. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58(9):2137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sobrin L, Green T, Sim X, Jensen RA, Tai ES, Tay WT, et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe). Invest Ophthalmol Vis Sci. 2011;52(10):7593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hosseini SM, Boright AP, Sun L, Canty AJ, Bull SB, Klein BE, et al. The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Hum Genet. 2015;134(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  63. Tong Z, Yang Z, Patel S, Chen H, Gibbs D, Yang X, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A. 2008;105(19):6998–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abhary S, Burdon KP, Casson RJ, Goggin M, Petrovsky NP, Craig JE. Association between erythropoietin gene polymorphisms and diabetic retinopathy. Arch Ophthalmol. 2010;128(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  65. • Porta M, Toppila I, Sandholm N, Hosseini SM, Forsblom C, Hietala K, et al. Variation in SLC19A3 and protection from microvascular damage in type 1 diabetes. Diabetes. 2016;65(4):1022–30. Candidate gene study on thiamin transporters with a genome-wide significant association for a composite phenotype of ESRD and DR.

    Article  CAS  PubMed  Google Scholar 

  66. Fu YP, Hallman DM, Gonzalez VH, Klein BE, Klein R, Hayes MG, et al. Identification of diabetic retinopathy genes through a genome-wide association study among Mexican-Americans from Starr County, Texas. J Ophthalmol. 2010; doi:10.1155/2010/861291.

  67. Huang YC, Lin JM, Lin HJ, Chen CC, Chen SY, Tsai CH, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118(4):642–8.

    Article  PubMed  Google Scholar 

  68. Sheu WH, Kuo JZ, Lee IT, Hung YJ, Lee WJ, Tsai HY, et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum Mol Genet. 2013;22(15):3165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One. 2014;9(11):e111715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. •• Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58(10):2288–97. GWAS on retinopathy with genome-wide significant findings in GRB2 after multi-ethnic replication.

    Article  CAS  PubMed  Google Scholar 

  71. Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. 2011;20(12):2472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Shtir C, Aldahmesh MA, Al-Dahmash S, Abboud E, Alkuraya H, Abouammoh MA, et al. Exome-based case-control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum Genet. 2016;135(2):193–200. The first whole-exome sequencing study on DR suggesting excess of rare variants in three genes resulting in protection from DR.

    Article  CAS  PubMed  Google Scholar 

  73. Peng D, Wang J, Zhang R, Jiang F, Tang S, Chen M, et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetologia. 2015;58(6):1231–8.

    Article  CAS  PubMed  Google Scholar 

  74. Grassi MA, Tikhomirov A, Ramalingam S, Lee KE, Hosseini SM, Klein BE, et al. Replication analysis for severe diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53(4):2377–81.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cheung CY, Hui EY, Lee CH, Kwok KH, Gangwani RA, Li KK, et al. Impact of genetic loci identified in genome-wide association studies on diabetic retinopathy in Chinese patients with type 2 diabetes. Invest Ophthalmol Vis Sci. 2016;57(13):5518–24.

    Article  CAS  PubMed  Google Scholar 

  76. McAuley AK, Wang JJ, Dirani M, Connell PP, Lamoureux E, Hewitt AW. Replication of genetic loci implicated in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1666–71.

    Article  CAS  PubMed  Google Scholar 

  77. • Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, et al. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain. 2015;19(3):392–9. First GWAS on diabetic neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meng W, Deshmukh HA, Donnelly LA, Wellcome Trust Case Control Consortium 2 (WTCCC2), Surrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) study group, Torrance N, et al. A genome-wide association study provides evidence of sex-specific involvement of Chr1p35.1 (ZSCAN20-TLR12P) and Chr8p23.1 (HMGB1P46) with diabetic neuropathic pain. EBioMedicine. 2015;2(10):1386–93.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li Y, Tong N. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: a meta-analysis. J Renin-Angiotensin-Aldosterone Syst. 2015;16(4):787–92.

    Article  CAS  PubMed  Google Scholar 

  80. Xu W, Qian Y, Zhao L. Angiotensin-converting enzyme I/D polymorphism is a genetic biomarker of diabetic peripheral neuropathy: evidence from a meta-analysis. Int J Clin Exp Med. 2015;8(1):944–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu S, Han Y, Hu Q, Zhang X, Cui G, Li Z, et al. Effects of common polymorphisms in the MTHFR and ACE genes on diabetic peripheral neuropathy progression: a meta-analysis. Mol Neurobiol. 2017;54(4):2435–44.

  82. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  CAS  Google Scholar 

  83. Tuomilehto J, Borch-Johnsen K, Molarius A, Forsen T, Rastenyte D, Sarti C, et al. Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia. 1998;41(7):784–90.

    Article  CAS  PubMed  Google Scholar 

  84. de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014;130(13):1110–30.

    Article  PubMed  Google Scholar 

  85. Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002;25(7):1129–34.

    Article  PubMed  Google Scholar 

  86. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham study. Am Heart J. 1990;120(4):963–9.

    Article  CAS  PubMed  Google Scholar 

  87. Earle K, Walker J, Hill C, Viberti G. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med. 1992;326(10):673–7.

    Article  CAS  PubMed  Google Scholar 

  88. Lange LA, Bowden DW, Langefeld CD, Wagenknecht LE, Carr JJ, Rich SS, et al. Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke. 2002;33(7):1876–81.

    Article  PubMed  Google Scholar 

  89. Levy AP, Hochberg I, Jablonski K, Resnick HE, Lee ET, Best L, et al. Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the Strong Heart Study. J Am Coll Cardiol. 2002;40(11):1984–90.

    Article  PubMed  Google Scholar 

  90. Adams JN, Cox AJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Genetic analysis of haptoglobin polymorphisms with cardiovascular disease and type 2 diabetes in the Diabetes Heart Study. Cardiovasc Diabetol. 2013;12(1):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Orchard TJ, Backlund JC, Costacou T, Cleary P, Lopes-Virella M, Levy AP, et al. Haptoglobin 2–2 genotype and the risk of coronary artery disease in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). J Diabetes Complicat. 2016;30(8):1577–84.

    Article  Google Scholar 

  92. Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, di Pietro N, et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013;310(8):821–8.

    Article  CAS  PubMed  Google Scholar 

  93. Prudente S, Shah H, Bailetti D, Pezzolesi M, Buranasupkajorn P, Mercuri L, et al. Genetic variant at the GLUL locus predicts all-cause mortality in patients with type 2 diabetes. Diabetes. 2015;64(7):2658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Look AHEAD Research Group. Prospective association of GLUL rs10911021 with cardiovascular morbidity and mortality among individuals with type 2 diabetes: the Look AHEAD study. Diabetes. 2016;65(1):297–302.

    Google Scholar 

  95. • Shah HS, Gao H, Morieri ML, Skupien J, Marvel S, Pare G, et al. Genetic predictors of cardiovascular mortality during intensive glycemic control in type 2 diabetes: findings from the ACCORD clinical trial. Diabetes Care. 2016;39(11):1915–24. GWAS on cardiovascular mortality in intensively treated diabetic subjects.

    Article  PubMed  Google Scholar 

  96. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  97. • CARDIoGRAMplusC4D Consortium. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30. The largest GWAS to date on CVD in the general population.

  98. Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, et al. Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol. 2011;58(25):2675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raffield LM, Cox AJ, Carr JJ, Freedman BI, Hicks PJ, Langefeld CD, et al. Analysis of a cardiovascular disease genetic risk score in the Diabetes Heart Study. Acta Diabetol. 2015;52(4):743–51.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cox AJ, Hsu FC, Ng MC, Langefeld CD, Freedman BI, Carr JJ, et al. Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care. 2014;37(4):1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17(6):806–14.

    Article  CAS  PubMed  Google Scholar 

  102. Doria A, Wojcik J, Xu R, Gervino EV, Hauser TH, Johnstone MT, et al. Interaction between poor glycemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. JAMA. 2008;300(20):2389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hagg S, Thorn LM, Putaala J, Liebkind R, Harjutsalo V, Forsblom CM, et al. Incidence of stroke according to presence of diabetic nephropathy and severe diabetic retinopathy in patients with type 1 diabetes. Diabetes Care. 2013;36(12):4140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  105. Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7.

    Article  CAS  PubMed  Google Scholar 

  106. Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  107. Van Zuydam NR, De Andrade M, Vlacholpoulou E, Ahlqvist E, Fagerholm E, Salomaa V, et al. Differential genetic susceptibility to peripheral arterial disease in subjects with and without diabetes. Diabetes. 2015;64(S1):A15. Meeting abstract at the American Diabetes Association, 75th scientific sessions, Boston.

    Google Scholar 

  108. Rayner NW, Ahlqvist E, Deshmukh H, Van Zuydam N, Sandholm N, Ladenvall C, et al. Genome-wide association studies of diabetic kidney disease in patients with type 2 diabetes. Diabetologia. 2015;58:S200. Meeting abstract at the 51st European Association for the Study of Diabetes Annual Meeting, Stockholm, Sweden.

    Google Scholar 

  109. Todd JN, Salem R, Sandholm N, Valo EA, Hiraki LT, Di Liao C, et al. Novel genetic determinants of diabetic kidney disease. Diabetes. 2016;65(S1):A100. Meeting abstract at the American Diabetes Association, 76th scientific sessions, New Orleans.

    Google Scholar 

  110. Haukka J, Sandholm N, Toppila I, Valo EA, Forsblom C, Groop P. Pedigree-based analysis of diabetic nephropathy in T1D patients. Diabetes. 2016;65(S1):A73. Meeting abstract at the American Diabetes Association, 76th scientific sessions, New Orleans.

    Google Scholar 

Download references

Acknowledgements

Niina Sandholm reports grants from Academy of Finland (299200), Folkhälsan Research Foundation, and Wilhelm and Else Stockmann Foundation. Emma Dahlström is supported by grants from Nylands Nation, the Waldemar von Frenckell Foundation, and the Finnish Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Sandholm.

Ethics declarations

Conflict of Interest

Emma Dahlström and Niina Sandholm declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlström, E., Sandholm, N. Progress in Defining the Genetic Basis of Diabetic Complications. Curr Diab Rep 17, 80 (2017). https://doi.org/10.1007/s11892-017-0906-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0906-z

Keywords

Navigation