Skip to main content

Advertisement

Log in

The Role of Retinal Imaging and Portable Screening Devices in Tele-ophthalmology Applications for Diabetic Retinopathy Management

  • Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In the years since its introduction, retinal imaging has transformed our capability to visualize the posterior pole of the eye. Increasing practical advances in mobile technology, regular monitoring, and population screening for diabetic retinopathy management offer the opportunity for further development of cost-effective applications through remote assessment of the diabetic eye using portable retinal cameras, smart-phone-based devices and telemedicine networks. Numerous retinal imaging methods and mobile technologies in tele-ophthalmology applications have been reported for diabetic retinopathy screening and management. They provide several advantages of automation, sensitivity, specificity, portability, and miniaturization for the development of point-of-care diagnostics for eye complications in diabetes. The aim of this paper is to review the role of retinal imaging and mobile technologies in tele-ophthalmology applications for diabetic retinopathy screening and management. At large, although improvements in current technology and telemedicine services are still needed, telemedicine has demonstrated to be a worthy tool to support health caregivers in the effective management and prevention of diabetes and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, 2015. http://www.diabetesatlas.org Accessed June 10, 2016.

  2. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saddine JB, Honeycutt AA, Narayan KM, Zhang X, Klein R, Boyle JP. Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Arch Ophthalmol. 2008;126(12):1740–7.

    Article  Google Scholar 

  4. Jackson Healthcare 2016 Physician Practice Trends https://indd.adobe.com/embed/publications/33da1880-ba88-4d3d-adae-97d2d2394441/r6ke/publication-web-resources/pdf/2016PhysicianPracticeTrends_DOC0316.pdf. Accessed 10 June 2016.

  5. Van Trigt AC. Trajecti ad Rhenum. 1853. Dissertatio ophthalmologica inauguralis de speculo oculi.

  6. Helmholtz H. v. − Beschreibung eines Augen-Spiegels zur Untersuchung der Netzhaut im lebenden Auge. A. Förstner’sche Verlagsbuchhandlung, Berlin 1851.

  7. Purkyně JE. Erstes Bandchen, Beitrage zur Kenntniss des Sehens in subjectiver Hinsicht. Prague, Austria; 1823. Beobachtungen und Versuche zur Physiologie der Sinne.

  8. Symes GW. Babbbage, Benjamin Herschel (1815–1878), engineer, scientist and explorer. In: Pike D, editor. Australian dictionary of biography, vol. 3. Melbourne: Melbourne University Press; 1969. p. 65–6.

    Google Scholar 

  9. Gerloff O. Uber die Photographie des Augenhintergrundes. Klin Monbl Augenheilkd. 1891;29:397–403.

    Google Scholar 

  10. Gullstrand A. Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft. 1910;36.

  11. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;196(24):82–6.

    Article  Google Scholar 

  12. Allen L. Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol. 1964;57:13–28.

    Article  CAS  PubMed  Google Scholar 

  13. Digital Photography Milestones from Kodak. Women in Photography International. 2005; http://www.womeninphotography.org/Events-Exhibits/Kodak/EasyShare_3.html. Accessed 10 June 2016.

  14. Pomerantzeff O, Webb RH. Scanning ophthalmoscope for examining the fundus of the eye. US Patent 1980: 4 213 678 June 2016.

  15. Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng. 1981;28(4):488–92.

    Article  CAS  PubMed  Google Scholar 

  16. Minsky M. Memoir on inventing the confocal scanning laser microscope. Scanning. 1988;10:128–38.

    Article  Google Scholar 

  17. Dreher AW, Bille JF, Weinreb RN. Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt. 1989;28:804–8.

    Article  CAS  PubMed  Google Scholar 

  18. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27:45–88.

    Article  PubMed  Google Scholar 

  20. Cabrera DeBuc D. A review of algorithms for segmentation of retinal image data using optical coherence tomography. In: Image Segmentation. Dr. Pei-Gee Ho (Ed.), InTech. 2011. Available from: http://www.intechopen.com/books/image-segmentation/a-review-of-algorithms-for-segmentation-of-retinal-image-data-using-optical-coherence-tomography.

  21. Tian J, Varga B, Tatrai E, Fanni P, Somfai GM, Smiddy WE, et al. Performance evaluation of automated segmentation software on optical coherence tomography volume data. J Biophotonics. 2016;9(5):478–89.

    Article  PubMed  Google Scholar 

  22. Stanga PE, Bird AC. Optical coherence tomography (OCT): principles of operation, technology, indications in vitreoretinal imaging and interpretation of results. Int Ophthalmol. 2001;23:191–7.

    Article  CAS  PubMed  Google Scholar 

  23. Schaudig UH, Glaefke C, Scholz F, et al. Optical coherence tomography for retinal thickness measurement in diabetic patients without clinically significant macular edema. Ophthalmic Surg Lasers. 2000;31:182–6.

    CAS  PubMed  Google Scholar 

  24. Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye. 2009;23:884–9.

    Article  CAS  PubMed  Google Scholar 

  25. Asefzadeh B, Fisch BM, Parenteau CE, et al. Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy. Clin Experiment Ophthalmol. 2008;36:455–63.

    Article  PubMed  Google Scholar 

  26. Goebel W, Kretzchmar-Gross T. Retinal thickness in diabetic retinopathy: a study using optical coherence tomography (OCT). Retina. 2002;22:759–67.

    Article  PubMed  Google Scholar 

  27. Bressler NM, Edwards AR, Antoszyk AN, et al. Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am J Ophthalmol. 2008;145:894–901.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Diabetic retinopathy: Where we are and a path to progress. 2012 http://www.laskerfoundation.org/media/filer_public/90/da/90dac4e3-af6f-4602-b479-df75837c6a5a/irrf_12.pdf. Accessed 10 June 2016.

  29. Mordant DJ, Al-Abboud I, Muyo G, et al. Spectral imaging of the retina. Eye. 2011;25:309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang HF, Puliafito CA, Jiao S. Photoacoustic ophthalmoscopy for in vivo retinal imaging: current status and prospects. Ophthalmic Surg Lasers Imaging. 2011;42:S106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. OCT Angiography: The Newest Frontier for the Revolutionary Technology. http://www.eurotimes.org/sites/default/files/images/supplements/ET20-4_Optovue_supplement.pdf. Accessed 10 June 2016.

  32. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  33. Der-Chong T, Shih-Hwa C, Fenq-Lih L, Ching-Kuang C, Shih-Jen C, Chi-Hsien P, et al. Possible involvement of nitric oxide in the progression of diabetic retinopathy. Ophthalmologica. 2003;217:342–6.

    Article  Google Scholar 

  34. Ali TK, Suraporn M, Bindu AP, Gregory IL, El-Remessy EB. Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes. 2008;57(4):889–98.

    Article  CAS  PubMed  Google Scholar 

  35. EI-Remessv EB, Behzadian MA, Abou-Mohamed A, Franklin T, Caldwell RW, Caldwell RB. Peroxynitrite causes increased vascular permeability in early experimental diabetes. Am J Pathology. 2003;162(6):1995–2004.

    Article  Google Scholar 

  36. Ola MS, Berkich DA, Xu Y, King MT, Gardner TW, Simpson I, et al. Analysis of glucose metabolism in diabetic rat retinas. Am J Physiol. 2006;290:E1057–106.

    CAS  Google Scholar 

  37. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50(8):1938–42.

    Article  CAS  PubMed  Google Scholar 

  38. Fenwick EK, Pesudovs K, Rees G, et al. The impact of diabetic retinopathy: understanding the patient’s perspective. Br J Ophthalmol. 2011;95(6):774–82.

    Article  CAS  PubMed  Google Scholar 

  39. Diabetes Information Clearinghouse. Diabetes, heart disease, and stroke. NIH Publication No.06-5094. 2005.

  40. Cunha-Vaz JF, de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singer D, Nathan D, Fogel H, Schachat A. Screening for diabetic retinopathy. Ann Intern Med. 1992;116:660–71.

    Article  CAS  PubMed  Google Scholar 

  42. Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JMP. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging. 2016;35(4):1116–26.

    Article  PubMed  Google Scholar 

  43. Hammond CJ, Shackleton J, Flanagan DW, Herrtage J, Wade J. Comparison between an ophthalmic optician and an ophthalmologist in screening for diabetic retinopathy. Eye. 1996;10(Pt 1):107–12.

    Article  PubMed  Google Scholar 

  44. Kleinstein RN, Roseman JM, Herman WH, Holcombe J, Louv WC. Detection of diabetic retinopathy by optometrists. J Am Optom Assoc. 1987;58:879–82.

    CAS  PubMed  Google Scholar 

  45. Sussman EJ, Tsiaris WG, Soper KA. Diagnosis of diabetic eye disease. JAMA. 1982;247:3231–4.

    Article  CAS  PubMed  Google Scholar 

  46. de Sonnaville JJ, van der Feltz, van der Sloot D, Ernst L, Wijkel D, Heine RJ. Retinopathy screening in type 2 diabetes: reliability of wide angle fundus photography. Diabet Med. 1996;13:482–6.

    Article  PubMed  Google Scholar 

  47. Williams R, Nussey S, Humphry R, Thompson G. Assessment of non-mydriatic fundus photography in detection of diabetic retinopathy. BMJ. 1986;293:1140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joannou J, Kalk WJ, Mahomed I, Ntsepo S, Berzin M, Joffe BI, et al. Screening for diabetic retinopathy in South Africa with 60 degrees retinal color photography. J Intern Med. 1996;239:43–7.

    Article  CAS  PubMed  Google Scholar 

  49. Javitt JC, Aiello LP. Cost-effectiveness of detecting and treating diabetic retinopathy. Ann Intern Med. 1996;124:164–9.

    Article  CAS  PubMed  Google Scholar 

  50. Vijan S, Hofer TP, Hayward RA. Cost-utility analysis of screening intervals for diabetic retinopathy in patients with type 2 diabetes mellitus. JAMA. 2000;283:889–96.

    Article  CAS  PubMed  Google Scholar 

  51. Jones S, Edwards RT. Diabetic retinopathy screening: a systematic review of the economic evidence. Diabet Med. 2010;27:249–56.

    Article  CAS  PubMed  Google Scholar 

  52. Bjorvig S, Johansen MA, Fossen K. An economic analysis of screening for diabetic retinopathy. J Telemed Telecare. 2002;8:32–5.

    Article  PubMed  Google Scholar 

  53. Maberley D, Walker H, Koushik A, Cruess A. Screening for diabetic retinopathy in James Bay, Ontario: a cost-effectiveness analysis. JAMC. 2003; 168 (2).

  54. Aoki N, Dunn K, Fukui T, et al. Cost-effectiveness analysis of telemedicine to evaluate diabetic retinopathy in a prison population. Diabetes Care. 2004;27:1095–101.

    Article  PubMed  Google Scholar 

  55. Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru Study, Kenya. PLoS One. 2015;10, e0139148.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abramoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131:351–7.

    Article  PubMed  Google Scholar 

  57. •• Gómez EJ, del Pozo F, Serrano Ríos M. DIACRONO: a new portable microcomputer system for diabetes management. In: Proc. 9th Ann. Int. IEEE Engineering in Medicine and Biology Society; Nov. 13–16, 1987, Vol. 3 of 4, pp. 1231–2. This study describes the first portable system for diabetes management.

  58. Gómez EJ, del Pozo F, Hernando ME. Telemedicine for diabetes care: the DIABTel approach towards diabetes telecare. Med Inform (Lond). 1996;21(4):283–95.

    Article  Google Scholar 

  59. Bellazzi R, Larizza C, Montani S, Riva A, Stefanelli M, d’Annunzio G, et al. A telemedicine support for diabetes management: the TIDDM project. Comput Methods Programs Biomed. 2002;69(2):147–61.

    Article  CAS  PubMed  Google Scholar 

  60. Schrezenmeir J, Dirting K, Papazov P. Controlled multicenter study on the effect of computer assistance in intensive insulin therapy of type 1 diabetics. Comput Methods Programs Biomed. 2002;69(2):97–114.

    Article  PubMed  Google Scholar 

  61. Shea S, Weinstock RS, Teresi JA, Palmas W, Starren J, Cimino JJ, et al. A randomized trial comparing telemedicine case management with usual care in older, ethnically diverse, medically underserved patients with diabetes mellitus: 5 year results of the IDEATel study. J Am Med Inform Assoc. 2009;16(4):446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bellazi R, Bensa G, Brugues U, et al. Multi-access services for the management of diabetes mellitus: the M2DM. Proc. AMIA Symp. 2002:974.

  63. Rigla M, Hernando ME, Gómez EJ, Brugués E, García-Sáez G, Capel I, et al. Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technol Ther. 2008;10(3):194–9.

    Article  CAS  PubMed  Google Scholar 

  64. ••Bashshur RL, Shannon GW, Smith BR, Woodward MA. The empirical evidence for the telemedicine intervention in diabetes management. Telemed J E Health. 2015;21(5):321–54. This study provides a throughout review on telemedicine intervention in diabetes management.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tulu B, Chatterjee S, Maheshwari M. Telemedicine taxonomy: a classification tool. Telemed J E Health. 2007;13(3):349–58.

    Article  PubMed  Google Scholar 

  66. Kumar S, Yogesan K, Hudson B, Tay-Kearney ML. Internet based electronics eye care consultations: patient perspective. In: Yogesan K, Kumar S, Goldschmidth L, Cuadros J, editors. Tele-ophthalmology. Berlin: Springer Verlag; 2008. p. 133–8.

    Google Scholar 

  67. Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review. Ophthalmologica. 2011;226:161–81.

    Article  PubMed  Google Scholar 

  68. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2015;38 Suppl 1:S1–94.

    Google Scholar 

  69. Cavallerono J, Lawrence MG, Zimmer-galler I, American Telemedicine Association, Ocular Telehealth Special Interest Group; National Institute of Standards and Technology Working Group, et al. Telehealth practice recommendations for diabetic retinopathy. Telemed J E Health. 2004;10:469–82.

    Article  Google Scholar 

  70. Carole M, Desroches G, Garcia-Salinas R, Kherani A, et al. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can J Ophthalmol. 2008;43:658–68.

    Article  Google Scholar 

  71. Rudnisky CJ, Tennant MTS, de Leon AR, Hinz BJ, Greve MDJ. Benefits of stereopsis when identifying clinically significant macular edema via teleophthalmology. Can J Ophthalmol. 2006;41:727–32.

    Article  PubMed  Google Scholar 

  72. Bhargava M, Cheung CY, Sabanayagam C, et al. Accuracy of diabetic retinopathy screening by trained non-physician graders using non-Mydriatic fundus camera. Singapore Med J. 2012;53:715–9.

    PubMed  Google Scholar 

  73. Luzio S, Hatcher S, Zahlmann G, et al. Feasibility of using the TOSCA telescreening procedures for diabetic retinopathy. Diabet Med. 2004;21:1121–8.

    Article  CAS  PubMed  Google Scholar 

  74. Javit JC. Cost-savings associated with detection and treatment off diabetic eye disease. PharmacoEconomics. 1995;8:33–9.

    Article  Google Scholar 

  75. Bjorvig S, Johansen MA, Fossen K. An economic analysis of telemedicine to evaluate diabetic retinopathy. J Telemed Telecare. 2002;8:32–5.

    Article  PubMed  Google Scholar 

  76. Gomez-Ulla F, Alonso F, Aibar B, et al. A comparative cost analysis of digital fundus imaging and direct fundus exami- nation for assessment of diabetic retinopathy. Telemed J E Health. 2008;14:912–8.

    Article  PubMed  Google Scholar 

  77. • Rachapelle S, Legood R, Alavi Y, et al. The cost-utility of telemedicine to screen for diabetic retinopathy in India. Ophthalmology. 2013;120:566–73. This study describes a Markov model for a cos-utility analysis to assess the cost-effectiveness of a telemedicine screening program for DR in a rural region.

    Article  PubMed  Google Scholar 

  78. Mohan V, Deepa M, Pradeepa R, et al. Prevention of diabetes in rural India with a telemedicine intervention. J Diabetes Sci Technol. 2012;6:1355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scanlon PH, Malhotra R, Thomas G, et al. The effectiveness of screening for diabetic retinopathy by digital imaging photography and technician ophthalmoscopy. Diabet Med. 2003;20:467–74.

    Article  CAS  PubMed  Google Scholar 

  80. Murgatroyd H, Ellingford A, Cox A, et al. Effect of mydriasis and different field strategies on digital image screening of diabetic eye disease. Br J Ophthalmol. 2004;88:920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumari Rani P, Raman R, Manikandan M, Mahajan S, Paul PG, Sharma T. Patient satisfaction with teleophthalmology versus ophthalmologist-based screening in diabetic retinopa- thy. J Telemed Telecare. 2006;12:159–60.

    Article  PubMed  Google Scholar 

  82. Li Z, Wu C, Olayiwola JN, Hilaire DS, Huang JJ. Telemedicine-based digital retinal imaging vs standard ophthalmologic evaluation for the assessment of diabetic retinopathy. Conn Med. 2012;76:85–90.

    PubMed  Google Scholar 

  83. Tuulonen A, Ohinmaa T, Alanko HI, et al. The application of teleophthalmology in examining patients with glaucoma: a pilot study. J Glaucoma. 1999;8:367–73.

    Article  CAS  PubMed  Google Scholar 

  84. Paul PG, Raman R, Rani PK, et al. Patient satisfaction levels during teleophthalmology consultation in rural South India. Telemed J E Health. 2006;12:571–8.

    Article  PubMed  Google Scholar 

  85. Kurji K, Kiage D, Rudinsky CJ, Damji KF. Improving diabetic retinopathy screening in Africa: patient satisfaction with teleophthalmology versus ophthalmologist-based screening. Middle East Afr J Ophthalmol. 2013 Jan-Mar;20(1):56-60.

  86. Klonoff DC, Schwartz DM. An economic analysis of interventions for diabetes. Diabetes Care. 2000;23(3):390–404.

    Article  CAS  PubMed  Google Scholar 

  87. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris IFL, Klein R. Diabetic retinopathy. Diabetes Care. 2003; 26(1):226–229. [Online]. Available: PM:12502685.

  88. Fong DS, Sharza M, Chen W, Paschal JF, Ariyasu RG, Lee PP. Vision loss among diabetics in a group model health maintenance organization (HMO). Am J Ophthalmol. 2002;133(2):236–41.

    Article  PubMed  Google Scholar 

  89. Wilson DF, Vinogradov SA, Grosul P, Vaccarezza MN, Kuroki A, Bennett J. Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging. Appl Opt. 2005;44(25):5239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;518479.

  91. Maamari R, Keenan J, Fletcher D, Margolis T. A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol. 2014;98:438–41.

    Article  PubMed  Google Scholar 

  92. Navitsky C. The portable eye examination kit. Retina Today. 2013. Available at http://retinatoday.com/2013/12/the-portable-eye-examination-kit. Accessed 10 June 2016.

  93. Welch Allyn. iExaminer. Available at www.welchallyn.com/en/microsites/. Accessed 10 June 2016.

  94. Lord RK, Shah VA, San Filippo AN, Krishna R. Novel uses of smartphones in ophthalmology. Ophthalmology. 2010;117(6):1274.

    Article  PubMed  Google Scholar 

  95. Bastawrous A. Smartphone fundoscopy. Ophthalmology. 2012;119(2):432–3.

    Article  PubMed  Google Scholar 

  96. Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality Smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013:518479.

  97. Myung D, Jais A, He L, Blumenkranz MS, Chang RT. 3D printed Smartphone indirect lens adapter for rapid, high quality retinal imaging. J Mobile Tech Med. 2014;3(1):9–15.

    Article  Google Scholar 

  98. oDocs Eye Care. Publications. http://www.odocs-tech.com/research/. Accessed 10 June 2016.

  99. D-EYE portable retinal imaging system. https://www.d-eyecare.com/en_US/productveterinary#features. Accessed 10 June 2016.

  100. Russo A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. Comparison of Smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. Am J Ophthalmol. 2015;159:360–364.e1.

    Article  PubMed  Google Scholar 

  101. Paxos Scope. Digisight Technologies Inc. https://www.digisight.net/digisight/paxos-scope.php. Accessed 10 June 2016.

  102. Volk iNview. Volk Optical Inc. https://volk.com/index.php/volk-products/ophthalmic-cameras/volk-inview.html. Accessed 10 June 2016.

  103. MII Ret Cam Inc. http://www.miiretcam.com. Accessed 10 June 2016.

  104. i-RxCamTM. VisionQuest Biomedical LLC. http://visionquest-bio.com/i-rxcam.html. Accessed 10 June 2016.

  105. Non-mydriatic Fundus on Phone (FOP). Remidio Innovative Solutions Pvt. Ltd. http://www.remidio.com/. Accessed 10 June 2016.

  106. Swedish T, Roesch K, Lee IH, Rastogi K, Bernstein S, Raskar R. EyeSelfie: self directed eye alignment using reciprocal eye box imaging. ACM Trans Graphics. 2015;34(4):58.

    Article  Google Scholar 

  107. eyeMITRA: Mobile Retinal Imaging and Predictive Analytics. Available at: http://eyemitra.com. Accessed 10 June 2016.

  108. Diniz-Filho A, Boer ER, Gracitelli CP, Abe RY, van Driel N, Yang Z, et al. Evaluation of postural control in patients with glaucoma using a virtual reality environment. Ophthalmology. 2015;122(6):1131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Berger JW, Shin DS. Computer-vision-enabled augmented reality fundus biomicroscopy. Ophthalmology. 1999;106(10):1935–41.

    Article  CAS  PubMed  Google Scholar 

  110. Roodaki H, Filippatos K, Eslami A, Navab N. Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery. IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 2015, pp. 1–6

  111. Torok Z, Peto T, Csosz E, Tukacs E, Molnar AM, Berta A, et al. Combined methods for diabetic retinopathy screening, using retina photographs and tear fluid proteomics biomarkers. J Diabetes Res. 2015;2015:623619.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Torok Z, Peto T, Csosz E, Tukacs E, Molnar A, Maros-Szabo Z, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening. BMC Ophthalmol. COMPLETE.

  113. Miura et al. Effects of cataracts on flicker electroretinograms recorded with RETeval™ system: new mydriasis-free ERG device. BMC Ophthalmol. 2016;16:22. doi:10.1186/s12886-016-0200-x.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Computed assisted retinal analysis. Diagnos, Inc. Web site. Available at: http://www.diagnos.ca/cara/CARA_in_6_steps-en-39. Accessed 10 June 2016.

  115. • Leahy M, Wilson C, Hogan J, O’Brien P, Dsouza R, Neuhaus K, Bogue D, Subhash H, O’Riordan C, McNamara P. The how and why of a $10 optical coherence tomography system. Proc. SPIE 9697, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, 96970T. 2016. doi: 10.1117/12.2213465. This study describes a means to manufacture a low cost, compact, simple, and robust OCT system that could impact telemedicine applications in DR management.

  116. • Cabrera DeBuc D. Novel methods and diagnostic tools in diabetic retinopathy. Retin Physician. 2015;12:22–7. This manuscript provides a state-of-the art review in DR diagnosis.

    Google Scholar 

  117. •• DeBuc D. System and method for early detection of diabetic retinopathy using optical coherence tomography. U.S. Patent No. 8,868,155, Oct 21st, 2014. Available at: http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010080576. Accessed 17 Jan 2015. This patent introduces a novel methodology for the early detection of DR using Optical Coherence Tomography.

  118. Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016.

  119. Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging. 2005;36:57–66.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the Finker Frenkel Legacy Foundation, Inc., the NIH R01EY020607, the NIH Center Grant No. P30-EY014801, and by the unrestricted grant to the University of Miami from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Cabrera DeBuc.

Ethics declarations

Conflict of Interest

Delia Cabrera DeBuc is a member of the scientific advisory board of Optical Imaging Ltd and a Consultant to VisionQest Biomedical, LLC. She also has a patent issued (U.S. Patent No. 8,868,155).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeBuc, D.C. The Role of Retinal Imaging and Portable Screening Devices in Tele-ophthalmology Applications for Diabetic Retinopathy Management. Curr Diab Rep 16, 132 (2016). https://doi.org/10.1007/s11892-016-0827-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0827-2

Keywords

Navigation