Skip to main content

Advertisement

Log in

SGLT2 Inhibitors: Benefit/Risk Balance

Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1:140–51.

    Article  CAS  PubMed  Google Scholar 

  2. Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res Clin Pract. 2014;104:297–322.

    Article  CAS  PubMed  Google Scholar 

  3. Scheen AJ, Paquot N. Metabolic effects of SGLT2 inhibitors beyond increased glucosuria: a review of clinical evidence. Diabetes Metab. 2014;40:S4–11.

    Article  CAS  PubMed  Google Scholar 

  4. Abdul-Ghani MA, Norton L, DeFronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32:515–31.

    Article  CAS  PubMed  Google Scholar 

  5. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.

    Article  CAS  PubMed  Google Scholar 

  6. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53:213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scheen AJ. Drug-drug interactions with SGLT-2 inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes. Clin Pharmacokinet. 2014;53:295–304.

    Article  CAS  PubMed  Google Scholar 

  8. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159:262–74.

    Article  PubMed  Google Scholar 

  9. Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013;13:58.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59. Extensive review on the pharmacokinetic, pharmacodynamic and clinical characteristics of SGLT2 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  11. Liu XY, Zhang N, Chen R, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2 years. J Diabetes Complicat. 2015;29:1295–303.

    Article  PubMed  Google Scholar 

  12. Zhong X, Lai D, Ye Y, et al. Efficacy and safety of empagliflozin as add-on to metformin for type 2 diabetes: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2016;72:655–63.

    Article  CAS  PubMed  Google Scholar 

  13. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.

    Article  PubMed  Google Scholar 

  14. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2016 executive summary. Endocr Pract. 2016;22:84–113.

    Article  PubMed  Google Scholar 

  15. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. Landmark study reporting a remarkable reduction in cardiovascular and all-cause mortality with the SGLT2 inhibitor empagliflozin in T2DM patients with CVD.

    Article  CAS  PubMed  Google Scholar 

  16. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323–34. Recent report demonstrating an impressive reduction in renal outcomes with empagliflozin in the EMPA-REG population of T2DM patients with CVD.

  17. Scheen AJ. SGLT2 inhibition: efficacy and safety in type 2 diabetes treatment. Expert Opin Drug Saf. 2015;14:1879–904. Recent review paper describing the most recent data regarding the efficacy and safety profile of SGLT2 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  18. Peters AL, Buschur EO, Buse JB, et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38:1687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015;3:8–10.

    Article  CAS  PubMed  Google Scholar 

  20. Plosker GL. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74:807–24.

    Article  CAS  PubMed  Google Scholar 

  21. European Medicines Agency. Assessment report. Canagliflozin. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002649/WC500156457.pdf 2013 (latest access June 7 2016).

  22. Plosker GL. Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72:2289–312.

    Article  CAS  PubMed  Google Scholar 

  23. Plosker GL. Dapagliflozin: a review of its use in patients with type 2 diabetes. Drugs. 2014;74:2191–209.

    Article  CAS  PubMed  Google Scholar 

  24. European Medicines Agency. Assessment report. Forxiga (dapagliflozin). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002322/WC500136024.pdf,2012. (latest access June 7 2016).

  25. Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74:1769–84.

    Article  CAS  PubMed  Google Scholar 

  26. European Medicines Agency. Assessment report : Jardiance. International non-proprietary name: empagliflozin. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002677/WC500168594.pdf 2014. (latest access June 7 2016).

  27. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu JH, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4:411–9. Well documented review on the efficacy and safety on SGLT2 inhibitors focusing on cardiovascular outcomes in patients with T2DM.

    Article  PubMed  Google Scholar 

  29. Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–94. Recent systematic review comparing the efficacy and safety of three SGLT2 inhibitors canagliflozin, dapagliflozin and empagliflozin in patients with T2DM.

    Article  CAS  PubMed  Google Scholar 

  30. Yang XP, Lai D, Zhong XY, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol. 2014;70:1149–58.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Zhang L, Wu B, et al. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2014;30:204–21.

    Article  CAS  PubMed  Google Scholar 

  32. Ptaszynska A, Johnsson KM, Parikh SJ, et al. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf. 2014;37:815–29.

    Article  CAS  PubMed  Google Scholar 

  33. Liakos A, Karagiannis T, Athanasiadou E, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2014;16:984–93.

    Article  CAS  PubMed  Google Scholar 

  34. Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2:911–22.

    Article  CAS  PubMed  Google Scholar 

  35. Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38:1161–72.

    Article  PubMed  Google Scholar 

  36. Barnett AH. Impact of sodium glucose cotransporter 2 inhibitors on weight in patients with type 2 diabetes mellitus. Postgrad Med. 2013;125:92–100.

    Article  PubMed  Google Scholar 

  37. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.

    Article  CAS  PubMed  Google Scholar 

  38. Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16:1087–95.

    Article  CAS  PubMed  Google Scholar 

  39. Blonde L, Stenlof K, Fung A, et al. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad Med. 2016;128:371–80.

    Article  PubMed  Google Scholar 

  40. Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16:159–69.

    Article  CAS  PubMed  Google Scholar 

  41. Ferrannini G, Hach T, Crowe S, et al. Energy balance after sodium glucose cotransporter 2 (SGLT2) inhibition. Diabetes Care. 2015;38:1730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cefalu WT, Stenlof K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia. 2015;58:1183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scheen AJ. Reappraisal of the diuretic effect of empagliflozin in EMPA-REG OUTCOME: comparison with classic diuretics. Diabetes Metab. 2016. doi:10.1016/j.diabet.2016.05.006.

    Google Scholar 

  45. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    Article  CAS  PubMed  Google Scholar 

  46. Baker WL, Smyth LR, Riche DM, et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262–75. e9.

    Article  CAS  PubMed  Google Scholar 

  47. Borghi C, Rosei EA, Bardin T, et al. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33:1729–41. discussion 41.

    Article  CAS  PubMed  Google Scholar 

  48. Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35:391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lytvyn Y, Skrtic M, Yang GK, et al. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Ren Physiol. 2015;308:F77–83.

    Article  CAS  Google Scholar 

  50. Ptaszynska A, Hardy E, Johnsson E, et al. Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med. 2013;125:181–9.

    Article  PubMed  Google Scholar 

  51. Davies MJ, Trujillo A, Vijapurkar U, et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17:426–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mikhail N. Safety of canagliflozin in patients with type 2 diabetes. Curr Drug Saf. 2014;9:127–32.

    Article  CAS  PubMed  Google Scholar 

  53. Briand F, Mayoux E, Brousseau E, et al. Empagliflozin, via switching metabolism towards lipid utilization, moderately increases LDL-cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65:2032–8.

    Article  PubMed  Google Scholar 

  54. Scheen AJ. Reduction in cardiovascular and all-cause mortality in the EMPA-REG OUTCOME trial: a critical analysis. Diabetes Metab. 2016;42:71–6.

    Article  PubMed  Google Scholar 

  55. DeFronzo RA. The EMPA-REG study: what has it told us? A diabetologist’s perspective. J Diabetes Complicat. 2016;30:1–2.

    Article  PubMed  Google Scholar 

  56. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 inhibition and cardiovascular events: why did EMPA-REG OUTCOMES surprise and what were the likely mechanisms? Diabetologia. 2016;59:1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Abdul-Ghani M, Del Prato S, Chilton R, et al. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39:717–25.

    Article  PubMed  Google Scholar 

  58. Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016. doi:10.1093/eurheartj/ehw110.

    PubMed  Google Scholar 

  59. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.

    Article  PubMed  Google Scholar 

  60. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–22.

    Article  PubMed  Google Scholar 

  61. Standl E, Schnell O, McGuire DK. Heart failure considerations of antihyperglycemic medications for type 2 diabetes. Circ Res. 2016;118:1830–43.

    Article  CAS  PubMed  Google Scholar 

  62. Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–34.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raz I, Cahn A. Heart failure: SGLT2 inhibitors and heart failure—clinical implications. Nat Rev Cardiol. 2016;13:185–6.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka A, Inoue T, Kitakaze M, et al. Rationale and design of a randomized trial to test the safety and non-inferiority of canagliflozin in patients with diabetes with chronic heart failure: the CANDLE trial. Cardiovasc Diabetol. 2016;15:57.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Clin Pharmacokinet. 2015;54:691–708.

    Article  CAS  PubMed  Google Scholar 

  66. Novikov A, Vallon V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens. 2016;25:50–8.

    Article  CAS  PubMed  Google Scholar 

  67. Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012;74:351–75.

    Article  CAS  PubMed  Google Scholar 

  68. De Nicola L, Gabbai FB, Liberti ME, et al. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis. 2014;64:16–24.

    Article  PubMed  Google Scholar 

  69. Leiter LA, Yoon KH, Arias P, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38:355–64.

    Article  CAS  PubMed  Google Scholar 

  70. Foote C, Perkovic V, Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab Vasc Dis Res. 2012;9:117–23.

    Article  PubMed  Google Scholar 

  71. Neal B, Perkovic V, de Zeeuw D, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)—a randomized placebo-controlled trial. Am Heart J. 2013;166:217–23. e11.

    Article  CAS  PubMed  Google Scholar 

  72. Geerlings S, Fonseca V, Castro-Diaz D, et al. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract. 2014;103:373–81.

    Article  CAS  PubMed  Google Scholar 

  73. Johnsson KM, Ptaszynska A, Schmitz B, et al. Urinary tract infections in patients with diabetes treated with dapagliflozin. J Diabetes Complicat. 2013;27:473–8.

    Article  PubMed  Google Scholar 

  74. Nyirjesy P, Sobel JD, Fung A, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. Curr Med Res Opin. 2014;30:1109–19.

    Article  CAS  PubMed  Google Scholar 

  75. Johnsson KM, Ptaszynska A, Schmitz B, et al. Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J Diabetes Complicat. 2013;27:479–84.

    Article  PubMed  Google Scholar 

  76. Sjostrom CD, Johansson P, Ptaszynska A, et al. Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diab Vasc Dis Res. 2015;12:352–8.

    Article  PubMed  Google Scholar 

  77. Elmore LK, Baggett S, Kyle JA, et al. A review of the efficacy and safety of canagliflozin in elderly patients with type 2 diabetes. Consult Pharm. 2014;29:335–46.

    Article  PubMed  Google Scholar 

  78. Mikhail N. Use of sodium-glucose cotransporter type 2 inhibitors in older adults with type 2 diabetes mellitus. South Med J. 2015;108:91–6.

    Article  CAS  PubMed  Google Scholar 

  79. US Food and Drug Administration. Drug safety communications : FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM446954.pdf 2015 (latest access June 7 2016).

  80. European Medicines Agency. EMA confirms recommendations to minimise ketoacidosis risk with SGLT2 inhibitors for diabetes. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/SGLT2_inhibitors/human_referral_prac_000052jsp&mid=WC0b01ac05805c516f 2016 (latest access June 7 2016).

  81. Modi A, Agrawal A, Morgan F. Euglycemic diabetic ketoacidosis. Curr Diabetes Rev. 2016 (in press).

  82. Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig. 2016;7:135–8.

    Article  CAS  PubMed  Google Scholar 

  83. Palmer BF, Clegg DJ, Taylor SI, et al. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complicat. 2016;30:1162–6.

  84. Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taylor SI, Blau JE, Rother KI. Perspective: SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21:512–7.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–42.

    Article  CAS  PubMed  Google Scholar 

  89. Erondu N, Desai M, Ways K, et al. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38:1680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meier C, Schwartz AV, Egger A, et al. Effects of diabetes drugs on the skeleton. Bone. 2016;82:93–100.

    Article  CAS  PubMed  Google Scholar 

  91. Ljunggren O, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012;14:990–9.

    Article  CAS  PubMed  Google Scholar 

  92. Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.

    Article  CAS  PubMed  Google Scholar 

  93. Food and Drug Administration. Invokana and Invokamet (canagliflozin): drug safety communication—new information on bone fracture risk and decreased bone mineral density. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm461876.htm 2015. (latest access June 7 2016).

  94. Alba M, Xie J, Fung A, et al. The effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on mineral metabolism and bone in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32:1375–85.

  95. Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101:157–66.

    Article  CAS  PubMed  Google Scholar 

  96. Bilezikian JP, Watts NB, Usiskin K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101:44–51.

    Article  CAS  PubMed  Google Scholar 

  97. European Medicines Agency. EMA reviews diabetes medicine canagliflozin. Review follows data on toe amputations in ongoing study. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Canagliflozin/human_referral_prac_000059.jsp&mid=WC0b01ac05805c516f 2016. (latest access June 7 2016).

  98. Lin HW, Tseng CH. A review on the relationship between SGLT2 inhibitors and cancer. Int J Endocrinol. 2014;2014:719578.

    PubMed  PubMed Central  Google Scholar 

  99. Ptaszynska A, Cohen SM, Messing EM, et al. Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a ‘case study’. Diabetes Ther. 2015;6:357–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Scheen.

Ethics declarations

Conflict of Interest

No sources of funding were used to assist in the preparation of this manuscript. No conflicts of interest are directly relevant to the content of this manuscript.

A.J. Scheen has received lecture/advisor fees from AstraZeneca/BMS, Boehringer Ingelheim, Eli Lilly, Janssen, Merck Sharp & Dohme, Novartis, NovoNordisk and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheen, A.J. SGLT2 Inhibitors: Benefit/Risk Balance. Curr Diab Rep 16, 92 (2016). https://doi.org/10.1007/s11892-016-0789-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0789-4

Keywords

Navigation