Skip to main content
Log in

Genetic Epidemiology of Type 1 Diabetes in the 22 Arab Countries

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is a complex autoimmune disorder that results from the T cell-mediated destruction of the pancreatic β cells and is due to interactions between environmental and genetic factors. Although Arabs have one of the highest global incidence and prevalence rates of T1D, unfortunately, there is a dearth of information regarding the genetic epidemiology of T1D in the Arab world. Arabs share several HLA haplotypes with other ethnic groups, which confer either susceptibility or protection to T1D, but they have specific haplotypes that are distinctive from other ethnicities. Among different Arab countries, several non-HLA genes were reported to be associated with susceptibility to T1D, including CTLA4, CD28, PTPN22, TCRβ, CD3z, IL15, BANK1, and ZAP70. In Arab countries, consanguinity, endogamy, and first-cousin marriage rates are some of the highest reported worldwide and are responsible for the creation of several inbreeding communities within the Arab world that have led to an increase in homozygosity of both the HLA haplotypes and non-HLA genes associated with either protection or susceptibility to T1D among Arabs. Homozygosity reduces the HLA complexity and is expected to facilitate our understanding of the mode of inheritance of HLA haplotypes and provide valuable insight into the intricate genotype-phenotype correlations in T1D patients. In this review, based on literature studies, I will discuss the current epidemiological profile and molecular genetic risks of Arabs with T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Daneman D. Type 1 diabetes. Lancet. 2006;367(9513):847–58. doi:10.1016/S0140-6736(06)68341-4.

    Article  CAS  PubMed  Google Scholar 

  2. DIAMOND Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23:857–66.

    Article  Google Scholar 

  3. Patterson C, Guariguata L, Dahlquist G, Soltesz G, Ogle G, Silink M. Diabetes in the young—a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract. 2014;103(2):161–75. doi:10.1016/j.diabres.2013.11.005. This study provides a thourough analysis of the prevalence estimates of type 1 diabetes worldwide.

    Article  PubMed  Google Scholar 

  4. Spielman RS, Baker L, Zmijewski CM. Gene dosage and suceptibility to insulin-dependent diabetes. Ann Hum Genet. 1980;44(Pt 2):135–50.

    Article  CAS  PubMed  Google Scholar 

  5. Awata T, Kuzuya T, Matsuda A, Iwamoto Y, Kanazawa Y. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia. 1992;35(5):419–24.

    Article  CAS  PubMed  Google Scholar 

  6. Thomson G, Robinson WP, Kuhner MK, Joe S, MacDonald MJ, Gottschall JL, et al. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet. 1988;43(6):799–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anaya JM, Castiblanco J, Tobon GJ, Garcia J, Abad V, Cuervo H, et al. Familial clustering of autoimmune diseases in patients with type 1 diabetes mellitus. J Autoimmun. 2006;26(3):208–14. doi:10.1016/j.jaut.2006.01.001.

    Article  CAS  PubMed  Google Scholar 

  8. Tattersall RB, Pyke DA. Diabetes in identical twins. Lancet. 1972;2(7787):1120–5.

    Article  CAS  PubMed  Google Scholar 

  9. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 1995;311(7010):913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52(4):1052–5.

    Article  CAS  PubMed  Google Scholar 

  11. Nerup J, Platz P, Andersen OO, Christy M, Lyngsoe J, Poulsen JE, et al. HL-A antigens and diabetes mellitus. Lancet. 1974;2(7885):864–6.

    Article  CAS  PubMed  Google Scholar 

  12. Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med. 1990;322(26):1836–41. doi:10.1056/NEJM199006283222602.

    Article  CAS  PubMed  Google Scholar 

  13. Pugliese A, Gianani R, Moromisato R, Awdeh ZL, Alper CA, Erlich HA, et al. HLA-DQB1*0602 is associated with dominant protection from diabetes even among islet cell antibody-positive first-degree relatives of patients with IDDM. Diabetes. 1995;44(6):608–13.

    Article  CAS  PubMed  Google Scholar 

  14. Trucco M, Dorman JS. Immunogenetics of insulin-dependent diabetes mellitus in humans. Crit Rev Immunol. 1989;9(3):201–45.

    CAS  PubMed  Google Scholar 

  15. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol. 2006;6(4):271–82. doi:10.1038/nri1805.

    Article  CAS  PubMed  Google Scholar 

  16. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet. 1996;59(5):1134–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Noble JA, Valdes AM, Varney MD, Carlson JA, Moonsamy P, Fear AL, et al. HLA class I and genetic susceptibility to type 1 diabetes: results from the type 1 diabetes genetics consortium. Diabetes. 2010;59(11):2972–9. doi:10.2337/db10-0699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12(11):781–92. doi:10.1038/nrg3069.

    Article  CAS  PubMed  Google Scholar 

  19. Soliman AT, al-Salmi IS, Asfour MG. Epidemiology of childhood insulin-dependent diabetes mellitus in the Sultanate of Oman. Diabet Med. 1996;13(6):582–6. doi:10.1002/(SICI)1096-9136(199606)13:6<582::AID-DIA114>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  20. Habeb AM, Al-Magamsi MS, Halabi S, Eid IM, Shalaby S, Bakoush O. High incidence of childhood type 1 diabetes in Al-Madinah, North West Saudi Arabia (2004–2009). Pediatr Diabetes. 2011;12(8):676–81. doi:10.1111/j.1399-5448.2011.00765.x.

    Article  PubMed  Google Scholar 

  21. Abduljabbar MA, Aljubeh JM, Amalraj A, Cherian MP. Incidence trends of childhood type 1 diabetes in eastern Saudi Arabia. Saudi Med J. 2010;31(4):413–8.

    PubMed  Google Scholar 

  22. Kulaylat NA, Narchi H. A twelve year study of the incidence of childhood type 1 diabetes mellitus in the Eastern Province of Saudi Arabia. J Pediatr Endocrinol Metab. 2000;13(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  23. Shaltout AA, Qabazard MA, Abdella NA, LaPorte RE, al Arouj M, Ben Nekhi A, et al. High incidence of childhood-onset IDDM in Kuwait. Kuwait Study Group of Diabetes in Childhood. Diabetes Care. 1995;18(7):923–7.

    Article  CAS  PubMed  Google Scholar 

  24. Shaltout AA, Moussa MA, Qabazard M, Abdella N, Karvonen M, Al-Khawari M, et al. Further evidence for the rising incidence of childhood Type 1 diabetes in Kuwait. Diabet Med. 2002;19(6):522–5.

    Article  CAS  PubMed  Google Scholar 

  25. Elamin A, Ghalib M, Eltayeb B, Tuvemo T. High incidence of type 1 diabetes mellitus in Sudanese children, 1991–1995. Ann Saudi Med. 1997;17(4):478–80.

    CAS  PubMed  Google Scholar 

  26. Ajlouni K, Qusous Y, Khawaldeh AK, Jaddou H, Batiehah A, Ammari F, et al. Incidence of insulin-dependent diabetes mellitus in Jordanian children aged 0–14 y during 1992–1996. Acta Paediatr Suppl. 1999;88(427):11–3.

    Article  CAS  PubMed  Google Scholar 

  27. Kadiki OA, Roaeid RB, Bhairi AM, Elamari IM. Incidence of insulin-dependent diabetes mellitus in Benghazi, Libya (1991–1995). Diabetes Metab. 1998;24(5):424–7.

    CAS  PubMed  Google Scholar 

  28. Kadiki OA, Roaeid RB. Incidence of type 1 diabetes in children (0–14 years) in Benghazi Libya (1991–2000). Diabetes Metab. 2002;28(6 Pt 1):463–7.

    CAS  PubMed  Google Scholar 

  29. Vos C, Reeser HM, Hirasing RA, Bruining GJ. Confirmation of high incidence of type 1 (insulin-dependent) diabetes mellitus in Moroccan children in The Netherlands. Diabet Med. 1997;14(5):397–400. doi:10.1002/(SICI)1096-9136(199705)14:5<397::AID-DIA358>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  30. El-Ziny MA, Salem NA, El-Hawary AK, Chalaby NM, Elsharkawy AA. Epidemiology of childhood type 1 diabetes mellitus in Nile Delta, northern Egypt—a retrospective study. J Clin Res Pediatr Endocrinol. 2014;6(1):9–15. doi:10.4274/Jcrpe.1171.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soliman AAM, Elsayed N. High incidence of childhood type 1 diabetes in Qatar between 2006 and 2011. Arch Dis Child. 2012;97:A185. doi:10.1136/archdischild-2012-302724.0639.

    Article  Google Scholar 

  32. Karvonen M, Pitkaniemi M, Pitkaniemi J, Kohtamaki K, Tajima N, Tuomilehto J. Sex difference in the incidence of insulin-dependent diabetes mellitus: an analysis of the recent epidemiological data. World Health Organization DIAMOND Project Group. Diabetes Metab Rev. 1997;13(4):275–91.

    Article  CAS  PubMed  Google Scholar 

  33. Wandell PE, Carlsson AC. Time trends and gender differences in incidence and prevalence of type 1 diabetes in Sweden. Curr Diabetes Rev. 2013;9(4):342–9.

    Article  PubMed  Google Scholar 

  34. Al-Herbish AS, El-Mouzan MI, Al-Salloum AA, Al-Qurachi MM, Al-Omar AA. Prevalence of type 1 diabetes mellitus in Saudi Arabian children and adolescents. Saudi Med J. 2008;29(9):1285–8.

    PubMed  Google Scholar 

  35. Bessaoud K, Boudraa G, Deschamps I, Hors J, Benbouabdallah M, Touhami M. Epidemiology of juvenile insulin-dependent diabetes in Algeria (Wilaya of Oran). Rev Epidemiol Sante Publique. 1990;38(2):91–9.

    CAS  PubMed  Google Scholar 

  36. Elamin A, Omer MI, Hofvander Y, Tuvemo T. Prevalence of IDDM in schoolchildren in Khartoum, Sudan. Diabetes Care. 1989;12(6):430–2.

    Article  CAS  PubMed  Google Scholar 

  37. Moussa MA, Alsaeid M, Abdella N, Refai TM, Al-Sheikh N, Gomez JE. Prevalence of type 1 diabetes among 6- to 18-year-old Kuwaiti children. Med Princ Pract. 2005;14(2):87–91. doi:10.1159/000083917.

    Article  PubMed  Google Scholar 

  38. Tadmouri GO, Nair P, Obeid T, Al Ali MT, Al Khaja N, Hamamy HA. Consanguinity and reproductive health among Arabs. Reprod Health. 2009;6:17. doi:10.1186/1742-4755-6-17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Gazali L, Hamamy H, Al-Arrayad S. Genetic disorders in the Arab world. BMJ. 2006;333(7573):831–4. doi:10.1136/bmj.38982.704931.AE.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bener A, Alali KA. Consanguineous marriage in a newly developed country: the Qatari population. J Biosoc Sci. 2006;38(2):239–46. doi:10.1017/s0021932004007060.

    Article  PubMed  Google Scholar 

  41. Magnus P, Berg K, Bjerkedal T. Association of parental consanguinity with decreased birth weight and increased rate of early death and congenital malformations. Clin Genet. 1985;28(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  42. Jorde LB, Pitkanen KJ. Inbreeding in Finland. Am J Phys Anthropol. 1991;84(2):127–39.

    Article  CAS  PubMed  Google Scholar 

  43. Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001;56:69–89.

    Article  CAS  PubMed  Google Scholar 

  44. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92. doi:10.2337/db07-1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Harbi EM, Abbassi AJ, Tamim H, al-Jenaidi F, Kooheji M, Kamal M, et al. Specific HLA-DRB and -DQB alleles and haplotypes confer disease susceptibility or resistance in Bahraini type 1 diabetes patients. Clin Diagn Lab Immunol. 2004;11(2):292–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gillespie KM, Gale EA, Bingley PJ. High familial risk and genetic susceptibility in early onset childhood diabetes. Diabetes. 2002;51(1):210–4.

    Article  CAS  PubMed  Google Scholar 

  47. Petrone A, Bugawan TL, Mesturino CA, Nistico L, Galgani A, Giorgi G, et al. The distribution of HLA class II susceptible/protective haplotypes could partially explain the low incidence of type 1 diabetes in continental Italy (Lazio region). Tissue Antigens. 2001;58(6):385–94.

    Article  CAS  PubMed  Google Scholar 

  48. Al-Jenaidi FA, Wakim-Ghorayeb SF, Al-Abbasi A, Arekat MR, Irani-Hakime N, Najm P, et al. Contribution of selective HLA-DRB1/DQB1 alleles and haplotypes to the genetic susceptibility of type 1 diabetes among Lebanese and Bahraini Arabs. J Clin Endocrinol Metab. 2005;90(9):5104–9. doi:10.1210/jc.2005-1166.

    Article  CAS  PubMed  Google Scholar 

  49. Stayoussef M, Benmansour J, Al-Irhayim AQ, Said HB, Rayana CB, Mahjoub T, et al. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia. Clin Vaccine Immunol. 2009;16(8):1146–50. doi:10.1128/CVI.00105-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stayoussef M, Benmansour J, Al-Jenaidi FA, Said HB, Rayana CB, Mahjoub T, et al. Glutamic acid decarboxylase 65 and islet cell antigen 512/IA-2 autoantibodies in relation to human leukocyte antigen class II DR and DQ alleles and haplotypes in type 1 diabetes mellitus. Clin Vaccine Immunol. 2011;18(6):990–3. doi:10.1128/CVI.00073-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gaber SA, Mazzola G, Berrino M, Canale L, Cornaglia M, Ghali I, et al. Human leukocyte antigen class II polymorphisms and genetic susceptibility of IDDM in Egyptian children. Diabetes Care. 1994;17(11):1341–4.

    Article  CAS  PubMed  Google Scholar 

  52. El-Amir MI, El-Feky MA, Laine AP, Harkonen T, El-Badawy O, Eltayeb AA, et al. Risk genes and autoantibodies in Egyptian children with type 1 diabetes—low frequency of autoantibodies in carriers of the HLA-DRB1*04:05-DQA1*03-DQB1*02 risk haplotype. Diabetes Metab Res Rev. 2015;31(3):287–94. doi:10.1002/dmrr.2609.

    Article  CAS  PubMed  Google Scholar 

  53. Izaabel H, Garchon HJ, Beaurain G, Biga M, Akhayat O, Bach JF, et al. Distribution of HLA class II alleles and haplotypes in insulin-dependent Moroccan diabetics. Hum Immunol. 1996;49(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  54. Dubois-Laforgue D, Timsit J, Djilali-Saiah I, Boitard C, Caillat-Zucman S. Insulin-dependent diabetes mellitus in non-DR3/non-DR4 subjects. Hum Immunol. 1997;57(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  55. Benseffaj N, Brick C, Atouf O, Bourhanbour DA, Sanae O, Essakalli M. Human leukocyte antigen (HLA) polymorphism and type 1 diabetes in the Moroccan population. Afr J Biotechnol. 2012;11(95):16126–31.

    CAS  Google Scholar 

  56. Keskin M, Aygun A, Pehlivan S, Keskin O, Kor Y, Balat A, et al. Trends in the frequency of HLA DR-DQ haplotypes among children and adolescents with type 1 diabetes mellitus in the Southeast Region of Turkey. J Clin Res Pediatr Endocrinol. 2012;4(4):189–92. doi:10.4274/jcrpe.768.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fekih Mrissa N, Mrad M, Ouertani H, Baatour M, Sayeh A, Nsiri B, et al. Association of HLA-DR-DQ polymorphisms with diabetes in Tunisian patients. Transfus Apher Sci. 2013;49(2):200–4.

    Article  PubMed  Google Scholar 

  58. Chen BH, Chiang CH, Lin SR, Chao MG, Tsai ST. The influence of age at onset and gender on the HLA-DQA1, DQB1 association in Chinese children with insulin dependent diabetes mellitus. Hum Immunol. 1999;60(11):1131–7.

    Article  CAS  PubMed  Google Scholar 

  59. Cisse A, Chevenne D, Chauffert M, Ndiaye MR, Wade A, Trivin F. HLA-markers and diabetic retinopathy in the Senegalese population. Dakar Med. 1998;43(1):29–33.

    CAS  PubMed  Google Scholar 

  60. Lee HC, Ikegami H, Fujisawa T, Ogihara T, Park SW, Chung YS, et al. Role of HLA class II alleles in Korean patients with IDDM. Diabetes Res Clin Pract. 1996;31(1–3):9–15.

    Article  CAS  PubMed  Google Scholar 

  61. Manan H, Angham AM, Sitelbanat A. Genetic and diabetic auto-antibody markers in Saudi children with type 1 diabetes. Hum Immunol. 2010;71(12):1238–42. doi:10.1016/j.humimm.2010.09.008.

    Article  CAS  PubMed  Google Scholar 

  62. Al-Hussein KA, Rama NR, Ahmad M, Rozemuller E, Tilanus MG. HLA-DPB1*0401 is associated with dominant protection against type 1 diabetes in the general Saudi population and in subjects with a high-risk DR/DQ haplotype. Eur J Immunogenet. 2003;30(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  63. Djoulah S, Khalil I, Beressi JP, Benhamamouch S, Bessaoud K, Deschamps I, et al. The HLA-DRB1*0405 haplotype is most strongly associated with IDDM in Algerians. Eur J Immunogenet. 1992;19(6):381–9.

    Article  CAS  PubMed  Google Scholar 

  64. Mosaad YM, Auf FA, Metwally SS, Elsharkawy AA, El-Hawary AK, Hassan RH, et al. HLA-DQB1* alleles and genetic susceptibility to type 1 diabetes mellitus. World J Diabetes. 2012;3(8):149–55. doi:10.4239/wjd.v3.i8.149.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Saleh HM, Rohowsky N, Leski M. The CTLA4 -819 C/T and +49 A/G dimorphisms are associated with Type 1 diabetes in Egyptian children. Indian J Hum Genet. 2008;14(3):92–8. doi:10.4103/0971-6866.45001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benmansour J, Stayoussef M, Al-Jenaidi FA, Rajab MH, Rayana CB, Said HB, et al. Association of single nucleotide polymorphisms in cytotoxic T-lymphocyte antigen 4 and susceptibility to autoimmune type 1 diabetes in Tunisians. Clin Vaccine Immunol. 2010;17(9):1473–7. doi:10.1128/CVI.00099-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ei Wafai RJ, Chmaisse HN, Makki RF, Fakhoury H. Association of HLA class II alleles and CTLA-4 polymorphism with type 1 diabetes. Saudi J Kidney Dis Transpl. 2011;22(2):273–81.

    PubMed  Google Scholar 

  68. Bouqbis L, Izaabel H, Akhayat O, Perez-Lezaun A, Calafell F, Bertranpetit J, et al. Association of the CTLA4 promoter region (−1661G allele) with type 1 diabetes in the South Moroccan population. Genes Immun. 2003;4(2):132–7. doi:10.1038/sj.gene.6363933.

    Article  CAS  PubMed  Google Scholar 

  69. Zalloua PA, Abchee A, Shbaklo H, Zreik TG, Terwedow H, Halaby G, et al. Patients with early onset of type 1 diabetes have significantly higher GG genotype at position 49 of the CTLA4 gene. Hum Immunol. 2004;65(7):719–24. doi:10.1016/j.humimm.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  70. Ferjeni Z, Bouzid D, Fourati H, Stayoussef M, Abida O, Kammoun T, et al. Association of TCR/CD3, PTPN22, CD28 and ZAP70 gene polymorphisms with type 1 diabetes risk in Tunisian population: family based association study. Immunol Lett. 2015;163(1):1–7. doi:10.1016/j.imlet.2014.11.005. This study higlights the importance of the involvment of several SNPs in genes that are relevant to autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  71. Zouidi F, Stayoussef M, Bouzid D, Fourati H, Abida O, Joao C, et al. Association of BANK1 and cytokine gene polymorphisms with type 1 diabetes in Tunisia. Gene. 2014;536(2):296–301. doi:10.1016/j.gene.2013.12.008. This study shows novel SNPs association with T1D in Tunisian Arabs.

    Article  CAS  PubMed  Google Scholar 

  72. Raum D, Awdeh Z, Alper CA. BF types and the mode of inheritance of insulin-dependent diabetes mellitus (IDDM). Immunogenetics. 1981;12(1–2):59–74.

    Article  CAS  PubMed  Google Scholar 

  73. Rich SS, Green A, Morton NE, Barbosa J. A combined segregation and linkage analysis of insulin-dependent diabetes mellitus. Am J Hum Genet. 1987;40(3):237–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawabata Y, Ikegami H, Kawaguchi Y, Fujisawa T, Shintani M, Ono M, et al. Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes. 2002;51(2):545–51.

    Article  CAS  PubMed  Google Scholar 

  75. Bugawan TL, Klitz W, Alejandrino M, Ching J, Panelo A, Solfelix CM, et al. The association of specific HLA class I and II alleles with type 1 diabetes among Filipinos. Tissue Antigens. 2002;59(6):452–69.

    Article  CAS  PubMed  Google Scholar 

  76. Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, et al. A molecular basis for MHC class II—associated autoimmunity. Science. 1988;240(4855):1003–9.

    Article  CAS  PubMed  Google Scholar 

  77. Haider MZ, Shaltout A, Alsaeid K, Al-Khawari M, Dorman JS. High frequency of HLA-DQB1 non-Asp(57) alleles in Kuwaiti children with insulin-dependent diabetes mellitus. Hum Hered. 2000;50(4):242–6.

    Article  CAS  PubMed  Google Scholar 

  78. Platz P, Jakobsen BK, Morling N, Ryder LP, Svejgaard A, Thomsen M, et al. HLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitus. Diabetologia. 1981;21(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  79. Rotter JI, Anderson CE, Rubin R, Congleton JE, Terasaki PI, Rimoin DL. HLA genotypic study of insulin-dependent diabetes the excess of DR3/DR4 heterozygotes allows rejection of the recessive hypothesis. Diabetes. 1983;32(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  80. Fendler W, Klich I, Cieslik-Heinrich A, Wyka K, Szadkowska A, Mlynarski W. Increased risk of type 1 diabetes in Polish children—association with INS-IGF2 5’VNTR and lack of association with HLA haplotype. Endokrynol Pol. 2011;62(5):436–42.

    CAS  PubMed  Google Scholar 

  81. Larsen CE, Alper CA. The genetics of HLA-associated disease. Curr Opin Immunol. 2004;16(5):660–7. doi:10.1016/j.coi.2004.07.014.

    Article  CAS  PubMed  Google Scholar 

  82. Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A. 2012;109(22):8676–81. doi:10.1073/pnas.1206614109. This is a useful a study to be used as a future platform for future HLA genotyping.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roark CL, Anderson KM, Simon LJ, Schuyler RP, Aubrey MT, Freed BM. Multiple HLA epitopes contribute to type 1 diabetes susceptibility. Diabetes. 2014;63(1):323–31. doi:10.2337/db13-1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siebold C, Hansen BE, Wyer JR, Harlos K, Esnouf RE, Svejgaard A, et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci U S A. 2004;101(7):1999–2004. doi:10.1073/pnas.0308458100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. She JX. Susceptibility to type I diabetes: HLA-DQ and DR revisited. Immunol Today. 1996;17(7):323–9.

    Article  CAS  PubMed  Google Scholar 

  86. Kachapati K, Adams D, Bednar K, Ridgway WM. The non-obese diabetic (NOD) mouse as a model of human type 1 diabetes. Methods Mol Biol. 2012;933:3–16. doi:10.1007/978-1-62703-068-7_1.

    CAS  PubMed  Google Scholar 

  87. Verge CF, Vardi P, Babu S, Bao F, Erlich HA, Bugawan T, et al. Evidence for oligogenic inheritance of type 1 diabetes in a large Bedouin Arab family. J Clin Invest. 1998;102(8):1569–75. doi:10.1172/JCI3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Babu SR, Bao F, Roberts CM, Martin AK, Gowan K, Eisenbarth GS, et al. Caspase 7 is a positional candidate gene for IDDM 17 in a Bedouin Arab family. Ann N Y Acad Sci. 2003;1005:340–3.

    Article  CAS  PubMed  Google Scholar 

  89. Eller E, Vardi P, McFann KK, Babu SR, Yu L, Bugawan TL, et al. Differential effects of DRB1*0301 and DQA1*0501-DQB1*0201 on the activation and progression of islet cell autoimmunity. Genes Immun. 2007;8(8):628–33. doi:10.1038/sj.gene.6364425.

    Article  CAS  PubMed  Google Scholar 

  90. Ikegami H, Kawaguchi Y, Yamato E, Kuwata S, Tokunaga K, Noma Y, et al. Analysis by the polymerase chain reaction of histocompatibility leucocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1992;75(5):1381–5. doi:10.1210/jcem.75.5.1358911.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Zayed.

Ethics declarations

Conflict of Interest

Hatem Zayed declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, H. Genetic Epidemiology of Type 1 Diabetes in the 22 Arab Countries. Curr Diab Rep 16, 37 (2016). https://doi.org/10.1007/s11892-016-0736-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0736-4

Keywords

Navigation