The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease

  • Tomás P. Griffin
  • William Patrick Martin
  • Nahidul Islam
  • Timothy O’Brien
  • Matthew D. GriffinEmail author
Microvascular Complications—Nephropathy (AP Maxwell, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Nephropathy


Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.


Diabetes mellitus Diabetic nephropathy Stem cells Mesenchymal stem cells Inflammation 



The authors are supported by grants from the European Commission [Horizon 2020 Collaborative Health Project NEPHSTROM (grant number 634086; TPG, WPM, NI, TO’B, MDG) and FP7 Collaborative Health Project VISICORT (grant number 602470; MDG)] and from Science Foundation Ireland [REMEDI Strategic Research Cluster (grant number 09/SRC-B1794; TO’B, MDG) and CÚRAM Research Centre (grant number 13/RC/2073; TO’B, MDG)] and by the European Regional Development Fund. TPG is supported by a Hardiman Scholarship from the College of Medicine, Nursing and Health Science of the National University of Ireland, Galway.

Compliance with Ethical Guidelines

Conflict of Interest

Tomás P. Griffin declares that he has no conflict of interest.

William Patrick Martin reports grant support from the European Commission.

Nahidul Islam reports grant support from the European Commission.

Timothy O’Brien reports grants from the European Commission, Science Foundation Ireland, and Medtronic. He reports other from the European Regional Development Fund, Orbsen Therapeutics and Onkimmune. He reports personal fees from Merck Sharp and Dohme, Sanofi Regeneron, Eli Lilly and Novo Nordisk.

Matthew D. Griffin reports grants from the European Commission, Science Foundation Ireland and Randox Teoranta; and other from the European Regional Development Fund,

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 Suppl 1:S3–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.PubMedCrossRefGoogle Scholar
  3. 3.
    World Health Organization: Diabetes Fact Sheet, 2012. Available at: http://www.whoint/mediacentre/factsheets/fs312/en/indexhtml
  4. 4.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.PubMedCrossRefGoogle Scholar
  5. 5.
    de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–76.PubMedCrossRefGoogle Scholar
  7. 7.
    USRDS: the United States Renal Data System. Am J Kidney Dis. 2003;42(6 Suppl 5):1–230.Google Scholar
  8. 8.
    Chen W, Chen W, Wang H, Dong X, Liu Q, Mao H, et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol Dial Transplant. 2009;24:1205–12.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yokoyama H, Sone H, Oishi M, Kawai K, Fukumoto Y, Kobayashi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009;24:1212–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Young BA, Maynard C, Boyko EJ. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care. 2003;26(8):2392–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang CW, Park JT, Kim YS, Kim YL, Lee YS, Oh YS, et al. Prevalence of diabetic nephropathy in primary care type 2 diabetic patients with hypertension: data from the Korean Epidemiology Study on Hypertension III (KEY III study). Nephrol Dial Transplant. 2011;26:3249–55.PubMedCrossRefGoogle Scholar
  12. 12.
    de Boer IH, Katz R, Cao JJ, Fried LF, Kestenbaum B, Mukamal K, et al. Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care. 2009;32:1833–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20:1813–21.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Emerging Risk Factors Collaboration, Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.CrossRefGoogle Scholar
  15. 15.
    Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58:1651–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2010;53:2312–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.••
    Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302–8. This epidemiological study, based on the NHANES cohort from the USA, underscores the fact that the excess cardiovascular morbidity and mortality associated with type 2 DM is predominantly manifest among those with CKD.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.•
    Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjörnsdottir S, et al. Excess mortality among persons with type 2 diabetes. New Engl J Med. 2015;373:1720–32. This epidemiological study from Sweden demonstrated that the excess risk of all-cause and cardiovascular death in type 2 DM increased with greater severity of renal complications as well as with younger age and worse glycaemic control.PubMedCrossRefGoogle Scholar
  19. 19.•
    Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–40. This review by leading researchers summarises recent insights into the pathophysiology of renal damage in DM.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    United States Renal Data System, 2014 Annual Data Report. Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease; 2014. [cited 2015 16 June]. Available from: Scholar
  21. 21.••
    Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24:1901–12. Using metabolomics screening of urine, the authors identified a 14-metabolite signature that was altered in DKD and that provided evidence for intra-renal mitochondrial dysfunction as an important pathophysiological abnormality.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl. 2007;106:S49–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994;43:1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayashi T, Takai S, Yamashita C. Impact of the renin-angiotensin-aldosterone-system on cardiovascular and renal complications in diabetes mellitus. Curr Vasc Pharmacol. 2010;8:189–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Vargas SL, Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 2009;20:1002–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wolf G, Mueller E, Stahl RA, Ziyadeh FN. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest. 1993;92:1366–72.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kalinyak JE, Sechi LA, Griffin CA, Don BR, Tavangar K, Kraemer FB, et al. The renin-angiotensin system in streptozotocin-induced diabetes mellitus in the rat. J Am Soc Nephrol. 1993;4:1337–45.PubMedGoogle Scholar
  28. 28.
    Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2008;294:F697–701.PubMedCrossRefGoogle Scholar
  29. 29.
    Wada T, Yokoyama H, Matsushima K, Kobayashi K. Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy? Nephrol Dial Transplant. 2003;18:457–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Yadav A, Vallabu S, Arora S, Tandon P, Slahan D, Teichberg S, et al. ANG II promotes autophagy in podocytes. Am J Physiol Cell Physiol. 2010;299:C488–96.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.•
    Sun L, Kanwar YS. Relevance of TNF-alpha in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int. 2015;88:662–5. This recent review focusses on clinical and experimental evidence for the role of TNF-α in the pathogenesis of DKD.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rodriguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. 2001;59:1626–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Di Paolo S, Gesualdo L, Ranieri E, Grandaliano G, Schena FP. High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. Am J Pathol. 1996;149:2095–106.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol. 2005;16 Suppl 1:S30–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Furuta T, Saito T, Ootaka T, Soma J, Obara K, Abe K, et al. The role of macrophages in diabetic glomerulosclerosis. Am J Kidney Dis. 1993;21:480–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ. Macrophage accumulation in human progressive diabetic nephropathy. Nephrol (Carlton). 2006;11:226–31.CrossRefGoogle Scholar
  37. 37.
    Lim A. Diabetic nephropathy—complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bending JJ, Lobo-Yeo A, Vergani D, Viberti GC. Proteinuria and activated T-lymphocytes in diabetic nephropathy. Diabetes. 1988;37:507–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A. 2010;107:9765–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Eller K, Kirsch A, Wolf AM, Sopper S, Tagwerker A, Stanzl U, et al. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes. 2011;60:2954–62.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.•
    Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots? Stem Cells. 2013;31:2033–41. This recent review provides a critical evaluation of current progress in understanding the anti-inflammatory properties of MSCs and in developing successful MSC therapies for human inflammatory diseases with emphasis on key challenges in the translational process.PubMedCrossRefGoogle Scholar
  42. 42.
    Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20:278–84.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pan XH, Yang XY, Yao X, Sun XM, Zhu L, Wang JX, et al. Bone-marrow mesenchymal stem cell transplantation to treat diabetic nephropathy in tree shrews. Cell Biochem Funct. 2014;32:453–63.PubMedGoogle Scholar
  44. 44.
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. Genome of the Chinese tree shrew. Nat Commun. 2013;4:1426.PubMedCrossRefGoogle Scholar
  45. 45.
    Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics. 2012;39:131–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Rabb GB, Getty RE, Williamson WM, Lombard LS. Spontaneous diabetes mellitus in tree shrews, Urogale everetti. Diabetes. 1966;15:327–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Wu X, Chang Q, Zhang Y, Zou X, Chen L, Zhang L, et al. Relationships between body weight, fasting blood glucose concentration, sex and age in tree shrews (Tupaia belangeri chinensis). J Anim Physiol Anim Nutr (Berl). 2013;97:1179–88.CrossRefGoogle Scholar
  48. 48.
    Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290:F214–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Kong LL, Wu H, Cui WP, Zhou WH, Luo P, Sun J, et al. Advances in murine models of diabetic nephropathy. J Diabetes Res. 2013;2013:797548.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.•
    Zhang L, Li K, Liu X, Li D, Luo C, Fu B, et al. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cell Dev. 2013;22:3074–86. In this pre-clinical study, repeated intravenous administration of human adipose-derived MSCs resulted in improvements to albuminuria and structural features of renal damage in an accelerated model of DKD in rat.CrossRefGoogle Scholar
  51. 51.
    Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. 2006;103:17438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Devarapu SK, Junhui X, Darisipudi M, Rocanin Arjo A, Anders HJ. CD362+ mesenchymal stem cell treatment of kidney disease in type 2 diabetic Lepr db/db mice. Nephrol Dial Transplant. 2015;30 suppl 3:iii223–4.Google Scholar
  53. 53.
    Tay YC, Wang Y, Kairaitis L, Rangan GK, Zhang C, Harris DC. Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int. 2005;68:391–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. 2004;14:1035–41.PubMedGoogle Scholar
  56. 56.
    Ezquer F, Ezquer M, Simon V, Pardo F, Yanez A, Carpio D, et al. Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol Blood Marrow Transplant. 2009;15:1354–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Kraynak AR, Storer RD, Jensen RD, Kloss MW, Soper KA, Clair JH, et al. Extent and persistence of streptozotocin-induced DNA damage and cell proliferation in rat kidney as determined by in vivo alkaline elution and BrdUrd labeling assays. Toxicol Appl Pharmacol. 1995;135:279–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrol (Carlton). 2007;12:261–6.CrossRefGoogle Scholar
  59. 59.
    Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol. 2010;21:1533–42.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Xu J, Huang Y, Li F, Zheng S, Epstein PN. FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria. Am J Physiol Renal Physiol. 2010;299:F487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17:2664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, et al. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med. 2012;30:85–92.PubMedGoogle Scholar
  63. 63.
    Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant. 2008;14:631–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Abdel Aziz MT, Wassef MA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, et al. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr. 2014;6:34.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lv S, Cheng J, Sun A, Li J, Wang W, Guan G, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress. Diabetes Res Clin Pract. 2014;104:143–54.PubMedCrossRefGoogle Scholar
  66. 66.•
    Lv SS, Liu G, Wang JP, Wang WW, Cheng J, Sun AL, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol. 2013;17:275–82. In this study, administration of autologous bone marrow-derived MSCs to rats with streptozotocin-induced DM resulted in improvements in the severity of DKD with reduced intra-renal expression of MCP-1 and pro-inflammatory cytokines as well as reduced renal macrophage infiltration.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant. 2013;19:538–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou H, Tian HM, Long Y, Zhang XX, Zhong L, Deng L, et al. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin Med J. 2009;122:2573–9.PubMedGoogle Scholar
  69. 69.•
    Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B, Fu B, et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther. 2013;4:103. This mechanistic study provided evidence that epithelial growth factor secreted by human adipose-derived MSCs protect podocytes from hyperglycaemia-induced apoptosis.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Park JH, Hwang I, Hwang SH, Han H, Ha H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract. 2012;98:465–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Park JH, Park J, Hwang SH, Han H, Ha H. Delayed treatment with human umbilical cord blood-derived stem cells attenuates diabetic renal injury. Transplant Proc. 2012;44:1123–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol. 2014;5:86.CrossRefGoogle Scholar
  73. 73.
    Zhang Y, Ye C, Wang G, Gao Y, Tan K, Zhuo Z, et al. Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. BioMed Res Int. 2013;2013:526367.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The anti-diabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012;30:1664–74.PubMedCrossRefGoogle Scholar
  75. 75.
    Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol. 2003;21:763–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Madec AM, Mallone R, Afonso G, Abou Mrad E, Mesnier A, Eljaafari A, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia. 2009;52:1391–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Ezquer ME, Ezquer FE, Arango-Rodriguez ML, Conget PA. MSC transplantation: a promising therapeutic strategy to manage the onset and progression of diabetic nephropathy. Biol Res. 2012;45:289–96.PubMedCrossRefGoogle Scholar
  78. 78.
    Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.•
    Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z, et al. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats. Int J Nanomedicine. 2014;9:5639–51. The authors of this innovative study demonstrated that release of SDF-1 in the kidney by USTMD resulted in increased homing of intravenously administered MSCs and improved MSC efficacy in a rat model of DKD.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A. 2006;103:8469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430–2.PubMedCrossRefGoogle Scholar
  82. 82.
    Parving HH, Oxenboll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh). 1982;100:550–5.Google Scholar
  83. 83.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Garrahy A, Tormey WP. Pitfalls of the urinary albumin creatinine ratio in detection of early diabetic kidney disease. Ir Med J. 2015;108:102–3.PubMedGoogle Scholar
  85. 85.
    Ismail N, Becker B, Strzelczyk P, Ritz E. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int. 1999;55:1–28.PubMedCrossRefGoogle Scholar
  86. 86.
    Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49:1399–408.PubMedCrossRefGoogle Scholar
  87. 87.
    Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Currie G, McKay G, Delles C. Biomarkers in diabetic nephropathy: present and future. World J Diabetes. 2014;5:763–76.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80:806–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med. 2014;31(9):1138–47.PubMedCrossRefGoogle Scholar
  91. 91.
    Navarro JF, Mora C, Macıéa M, Garcıéa J. Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus. Am J Kidney Dis. 2003;42:53–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Navarro JF, Mora C, Gomez M, Muros M, Lopez-Aguilar C, Garcia J. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor- and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transplant. 2007;23:919–26.PubMedCrossRefGoogle Scholar
  93. 93.
    Navarro JF, Mora C, Muros M, Garcia J. Urinary tumour necrosis factor- excretion independently correlates with clinical markers of glomerular and tubulointerstitial injury in type 2 diabetic patients. Nephrol Dial Transplant. 2006;21:3428–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B, et al. Serum concentrations of markers of TNF and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 2009;4:62–70.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012;23:516–24.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.••
    Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23:507–15. This biomarker study provides strong evidence that elevated serum sTNFR 1 and 2 concentrations in subjects with type 2 diabetes mellitus predict progression to ESRD.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol. 2014;221:R49–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118:1645–56.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ohashi N, Kato A, Misaki T, Sakakima M, Fujigaki Y, Yamamoto T, et al. Association of serum adiponectin levels with all-cause mortality in hemodialysis patients. Intern Med. 2008;47:485–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Nakamaki S, Satoh H, Kudoh A, Hayashi Y, Hirai H, Watanabe T. Adiponectin reduces proteinuria in streptozotocin-induced diabetic Wistar rats. Exp Biol Med. 2011;236:614–20.CrossRefGoogle Scholar
  101. 101.
    Tsioufis C, Dimitriadis K, Chatzis D, Vasiliadou C, Tousoulis D, Papademetriou V, et al. Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol. 2005;96:946–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Barlovic DP, Zaletel J, Prezelj J. Association between adiponectin and low-grade albuminuria is BMI-dependent in type 2 diabetes. Kidney Blood Press Res. 2010;33:405–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Barlovic DP, Zaletel J, Prezelj J. Adipocytokines are associated with renal function in patients with normal range glomerular filtration rate and type 2 diabetes. Cytokine. 2009;46:142–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Tamba S, Nakatsuji H, Kishida K, Noguchi M, Ogawa T, Okauchi Y, et al. Relationship between visceral fat accumulation and urinary albumin-creatinine ratio in middle-aged Japanese men. Atherosclerosis. 2010;211:601–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Jorsal A, Petersen EH, Tarnow L, Hess G, Zdunek D, Frystyk J, et al. Urinary adiponectin excretion rises with increasing albuminuria in type 1 diabetes. J Diabetes Complications. 2013;27:604–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Fujita H, Morii T, Koshimura J, Ishikawa M, Kato M, Miura T, et al. Possible relationship between adiponectin and renal tubular injury in diabetic nephropathy. Endocr J. 2006;53:745–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Koshimura J, Fujita H, Narita T, Shimotomai T, Hosoba M, Yoshioka N, et al. Urinary adiponectin excretion is increased in patients with overt diabetic nephropathy. Biochem Biophys Res Commun. 2004;316:165–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Looker HC, Krakoff J, Funahashi T, Matsuzawa Y, Tanaka S, Nelson RG, et al. Adiponectin concentrations are influenced by renal function and diabetes duration in Pima Indians with type 2 diabetes. J Clin Endocrinol Metab. 2004;89:4010–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Costacou T, Zgibor JC, Evans RW, Otvos J, Lopes-Virella MF, Tracy RP, et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2005;48:41–8.Google Scholar
  110. 110.
    Frystyk J, Tarnow L, Hansen TK, Parving HH, Flyvbjerg A. Increased serum adiponectin levels in type 1 diabetic patients with microvascular complications. Diabetologia. 2005;48:1911–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Schalkwijk CG, Chaturvedi N, Schram MT, Fuller JH, Stehouwer CD, Group EPCS. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J Clin Endocrinol Metab. 2006;91:129–35.PubMedCrossRefGoogle Scholar
  112. 112.
    Kacso IM, Bondor CI, Kacso G. Plasma adiponectin is related to the progression of kidney disease in type 2 diabetes patients. Scand J Clin Lab Invest. 2012;72:333–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Saraheimo M, Forsblom C, Thorn L, Waden J, Rosengard-Barlund M, Heikkila O, et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care. 2008;31:1165–9.PubMedCrossRefGoogle Scholar
  114. 114.•
    Panduru NM, Saraheimo M, Forsblom C, Thorn LM, Gordin D, Waden J, et al. Urinary adiponectin is an independent predictor of progression to end-stage renal disease in patients with type 1 diabetes and diabetic nephropathy. Diabetes Care. 2015;38:883–90. This recent study from the FinnDiane study group demonstrated that urinary adiponectin independently predicts progression from macro-albuminuria to ESRD in type 1 DM.PubMedCrossRefGoogle Scholar
  115. 115.
    Fu W-J, Li B-L, Wang S-B, Chen M-L, Deng R-T, Ye C-Q, et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res Clin Pract. 2012;95:105–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Yang Y-H, He X-J, Chen S-R, Wang L, Li E-M, Xu L-Y. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine. 2009;36:45–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Nielsen SE, Sugaya T, Hovind P, Baba T, Parving HH, Rossing P. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care. 2010;33:1320–4.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32:91–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Nielsen SE, Reinhard H, Zdunek D, Hess G, Gutiérrez OM, Wolf M, et al. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res Clin Pract. 2012;97:71–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Chou K-M, Lee C-C, Chen C-H, Sun C-Y. Clinical value of NGAL, L-FABP and albuminuria in predicting GFR decline in type 2 diabetes mellitus patients. PLoS One. 2013;8:e54863.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S, et al. Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int. 2012;82:812–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Lee CH, Lam KS. Biomarkers of progression in diabetic nephropathy: the past, present and future. J Diabetes Investig. 2015;6:247–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Titan SM, Zatz R, Graciolli FG, dos Reis LM, Barros RT, Jorgetti V, et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J Am Soc Nephrol. 2011;6:241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lee CH, Hui EY, Woo YC, Yeung CY, Chow WS, Yuen MM, et al. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab. 2015;100:1368–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25:2177–86.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJL, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007;212:209–17.PubMedCrossRefGoogle Scholar
  127. 127.
    Vaidya VS, Niewczas MA, Ficociello LH, Johnson AC, Collings FB, Warram JH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase. Kidney Int. 2011;79:464–70.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nielsen SE, Andersen S, Zdunek D, Hess G, Parving HH, Rossing P. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 2011;79:1113–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Nielsen SE, Rossing K, Hess G, Zdunek D, Jensen BR, Parving H-H, et al. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: u-NGAL, u-KIM1 and u-LFABP. Scand J Clin Lab Invest. 2012;72:137–42.PubMedCrossRefGoogle Scholar
  130. 130.••
    Looker HC, Colombo M, Hess S, Brosnan MJ, Farran B, Dalton RN, et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015;88(4):888–96. In this study the authors screened a large number of putative biomarkers for associations with DKD progression. A panel of 14 biomarkers including FGF-21, symmetric to asymmetric dimethylarginine ratio, β2-microglobulin, C16-acylcarnitine and KIM-1 was identified as improving the prediction of rapidly progressive decline in eGFR when added to clinical predictors.PubMedCrossRefGoogle Scholar
  131. 131.
    Hovind P, Tarnow L, Oestergaard PB, Parving H-H. Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy. Kidney Int. 2000;57(s75):56–61.CrossRefGoogle Scholar
  132. 132.
    Kim NH, Kim KB, Kim DL, Kim SG, Choi KM, Baik SH, et al. Plasma and urinary vascular endothelial growth factor and diabetic nephropathy in type 2 diabetes mellitus. Diabet Med. 2004;21:545–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Kim NH, Oh JH, Seo JA, Lee KW, Kim SG, Choi KM, et al. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney Int. 2005;67:167–77.PubMedCrossRefGoogle Scholar
  134. 134.
    Santilli F, Spagnoli A, Mohn A, Tumini S, Verrotti A, Cipollone F, et al. Increased vascular endothelial growth factor serum concentrations may help to identify patients with onset of type 1 diabetes during childhood at risk for developing persistent microalbuminuria. J Clin Endocrinol Metab. 2001;86:3871–6.PubMedCrossRefGoogle Scholar
  135. 135.
    D'Angio CT, Ambati J, Phelps DL. Do urinary levels of vascular endothelial growth factor predict proliferative retinopathy? Curr Eye Res. 2001;22:90–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Fiseha T. Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients. Biomark Res. 2015;3:16.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Robles-Osorio ML, Sabath E. Tubular dysfunction and non-albuminuric renal disease in subjects with type 2 diabetes mellitus. Rev Invest Clin. 2014;66:234–9.PubMedGoogle Scholar
  138. 138.
    Hong CY, Hughes K, Chia KS, Ng V, Ling SL. Urinary 1-microglobulin as a marker of nephropathy in type 2 diabetic Asian subjects in Singapore. Diabetes Care. 2003;26:338–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Gluhovschi C, et al. Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PLoS One. 2014;9:e112538.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Petrica L, Petrica M, Vlad A, Jianu DC, Gluhovschi G, Ianculescu C, et al. Proximal tubule dysfunction is dissociated from endothelial dysfunction in normoalbuminuric patients with type 2 diabetes mellitus: a cross-sectional study. Nephron Clin Pract. 2011;118:c155–64.PubMedCrossRefGoogle Scholar
  141. 141.
    Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, et al. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007;18:1057–71.PubMedCrossRefGoogle Scholar
  142. 142.
    Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev. 2009;28:703–24.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Mischak H, Delles C, Klein J, Schanstra JP. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv Chronic Kidney Dis. 2010;17:493–506.PubMedCrossRefGoogle Scholar
  144. 144.
    Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–37.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8:e62837.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.•
    Siwy J, Schanstra JP, Argiles A, Bakker SJL, Beige J, Boucek P, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29:1563–70. This study provided the first validation of the CKD273 urinary proteome-based classifier of DKD in a multicentre prospective setting involving type 2 diabetic subjects.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Roscioni SS, de Zeeuw D, Hellemons ME, Mischak H, Zürbig P, Bakker SJL, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012;56:259–67.PubMedCrossRefGoogle Scholar
  148. 148.
    Zurbig P, Jerums G, Hovind P, MacIsaac RJ, Mischak H, Nielsen SE, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis. 2013;61:300–9.PubMedCrossRefGoogle Scholar
  150. 150.••
    Packham DK, Fraser I, Kerr PG, Lichliter J, Itescu S, Skerrett D, et al. Mesenchymal stem cell therapy for diabetic nephropathy: a phase 2 randomized controlled trial. Diabetes. 2015;64(Suppl 1A):LB6. Although only reported in abstract form to date, the preliminary results for this completed Phase I/II trial provide key insights into the safety and potential efficacy of MSC therapy for established DKD.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tomás P. Griffin
    • 1
    • 2
  • William Patrick Martin
    • 1
    • 2
  • Nahidul Islam
    • 1
  • Timothy O’Brien
    • 1
    • 2
  • Matthew D. Griffin
    • 1
    • 3
    Email author
  1. 1.Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health SciencesNational University of IrelandGalwayIreland
  2. 2.Centre for Diabetes, Endocrinology and MetabolismGalway University Hospitals, Saolta University Health GroupGalwayIreland
  3. 3.Nephrology ServicesGalway University Hospitals, Saolta University Health GroupGalwayIreland

Personalised recommendations